Reduction of the computational cost of tuning methodology of a simulator of a physical system
- Autores
- Trigila, Mariano; Gaudiani, Adriana; Wong, Alvaro; Rexachs, Dolores; Luque, Emilio
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- parte de libro
- Estado
- versión publicada
- Descripción
- Fil: Trigila, Mariano. Pontificia Universidad Católica Argentina. Facultad de Ingeniería y Ciencias Agrarias; Argentina
Fil: Gaudiani, Adriana. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina
Fil: Wong, Alvaro. Universidad Autònoma de Barcelona. Departamento de Arquitectura de Computadores y Sistemas Operativos; España
Fil: Rexachs, Dolores. Universidad Autònoma de Barcelona. Departamento de Arquitectura de Computadores y Sistemas Operativos; España
Fil: Luque, Emilio. Universidad Autònoma de Barcelona. Departamento de Arquitectura de Computadores y Sistemas Operativos; España
Abstract: We propose a methodology for calibrating a physical system simulator and whose computational model represents its events in time series. The methodology reduces the search space of the fit parameters by exploring a database that contains stored historical events and their corresponding simulator fit parameters. We carry out the symbolic representation of the time series using ordinal patterns to classify the series, which allows us to search and compare by similarity on the stored data of the series represented. This classification strategy allows us to speed up the parameter search process, reduce the computational cost of the adjustment process and consequently improve energy cost savings. The experiences showed a reduction in the computational cost of 29% compared with our tuning methodology proposed in previous research. - Fuente
- En: Mikyška, J. et al. (eds). Computational Science. Lecture notes in Computer Science, vol 10475. Cham : Springer, 2023.
- Materia
-
SIMULACION PARAMETRICA
METODOLOGIA DE SINTONIZACION
PATRON ORDINAL
BASES DE DATOS
HERRAMIENTAS INFORMATICAS
SOFTWARE - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Pontificia Universidad Católica Argentina
- OAI Identificador
- oai:ucacris:123456789/17072
Ver los metadatos del registro completo
id |
RIUCA_9b3dec761b59e19f3481911f0537dfac |
---|---|
oai_identifier_str |
oai:ucacris:123456789/17072 |
network_acronym_str |
RIUCA |
repository_id_str |
2585 |
network_name_str |
Repositorio Institucional (UCA) |
spelling |
Reduction of the computational cost of tuning methodology of a simulator of a physical systemTrigila, MarianoGaudiani, AdrianaWong, AlvaroRexachs, DoloresLuque, EmilioSIMULACION PARAMETRICAMETODOLOGIA DE SINTONIZACIONPATRON ORDINALBASES DE DATOSHERRAMIENTAS INFORMATICASSOFTWAREFil: Trigila, Mariano. Pontificia Universidad Católica Argentina. Facultad de Ingeniería y Ciencias Agrarias; ArgentinaFil: Gaudiani, Adriana. Universidad Nacional de General Sarmiento. Instituto de Ciencias; ArgentinaFil: Wong, Alvaro. Universidad Autònoma de Barcelona. Departamento de Arquitectura de Computadores y Sistemas Operativos; EspañaFil: Rexachs, Dolores. Universidad Autònoma de Barcelona. Departamento de Arquitectura de Computadores y Sistemas Operativos; EspañaFil: Luque, Emilio. Universidad Autònoma de Barcelona. Departamento de Arquitectura de Computadores y Sistemas Operativos; EspañaAbstract: We propose a methodology for calibrating a physical system simulator and whose computational model represents its events in time series. The methodology reduces the search space of the fit parameters by exploring a database that contains stored historical events and their corresponding simulator fit parameters. We carry out the symbolic representation of the time series using ordinal patterns to classify the series, which allows us to search and compare by similarity on the stored data of the series represented. This classification strategy allows us to speed up the parameter search process, reduce the computational cost of the adjustment process and consequently improve energy cost savings. The experiences showed a reduction in the computational cost of 29% compared with our tuning methodology proposed in previous research.Springer2023info:eu-repo/semantics/bookPartinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_3248info:ar-repo/semantics/parteDeLibroapplication/pdfhttps://repositorio.uca.edu.ar/handle/123456789/17072978-3-031-36023-7 (impreso)978-3-031-36024-4 (online)10.1007/978-3-031-36024-4_49Trigila, M. et al. Reduction of the computational cost of tuning methodology of a simulator of a physical system [en línea]. En: Mikyška, J. et al. (eds). Computational Science. Lecture notes in Computer Science, vol 10475. Cham : Springer, 2023. doi: 10.1007/978-3-031-36024-4_49. Disponible en: https://repositorio.uca.edu.ar/handle/123456789/17072En: Mikyška, J. et al. (eds). Computational Science. Lecture notes in Computer Science, vol 10475. Cham : Springer, 2023.reponame:Repositorio Institucional (UCA)instname:Pontificia Universidad Católica Argentinaenginfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/2025-07-03T10:59:29Zoai:ucacris:123456789/17072instacron:UCAInstitucionalhttps://repositorio.uca.edu.ar/Universidad privadaNo correspondehttps://repositorio.uca.edu.ar/oaiclaudia_fernandez@uca.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:25852025-07-03 10:59:30.259Repositorio Institucional (UCA) - Pontificia Universidad Católica Argentinafalse |
dc.title.none.fl_str_mv |
Reduction of the computational cost of tuning methodology of a simulator of a physical system |
title |
Reduction of the computational cost of tuning methodology of a simulator of a physical system |
spellingShingle |
Reduction of the computational cost of tuning methodology of a simulator of a physical system Trigila, Mariano SIMULACION PARAMETRICA METODOLOGIA DE SINTONIZACION PATRON ORDINAL BASES DE DATOS HERRAMIENTAS INFORMATICAS SOFTWARE |
title_short |
Reduction of the computational cost of tuning methodology of a simulator of a physical system |
title_full |
Reduction of the computational cost of tuning methodology of a simulator of a physical system |
title_fullStr |
Reduction of the computational cost of tuning methodology of a simulator of a physical system |
title_full_unstemmed |
Reduction of the computational cost of tuning methodology of a simulator of a physical system |
title_sort |
Reduction of the computational cost of tuning methodology of a simulator of a physical system |
dc.creator.none.fl_str_mv |
Trigila, Mariano Gaudiani, Adriana Wong, Alvaro Rexachs, Dolores Luque, Emilio |
author |
Trigila, Mariano |
author_facet |
Trigila, Mariano Gaudiani, Adriana Wong, Alvaro Rexachs, Dolores Luque, Emilio |
author_role |
author |
author2 |
Gaudiani, Adriana Wong, Alvaro Rexachs, Dolores Luque, Emilio |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
SIMULACION PARAMETRICA METODOLOGIA DE SINTONIZACION PATRON ORDINAL BASES DE DATOS HERRAMIENTAS INFORMATICAS SOFTWARE |
topic |
SIMULACION PARAMETRICA METODOLOGIA DE SINTONIZACION PATRON ORDINAL BASES DE DATOS HERRAMIENTAS INFORMATICAS SOFTWARE |
dc.description.none.fl_txt_mv |
Fil: Trigila, Mariano. Pontificia Universidad Católica Argentina. Facultad de Ingeniería y Ciencias Agrarias; Argentina Fil: Gaudiani, Adriana. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina Fil: Wong, Alvaro. Universidad Autònoma de Barcelona. Departamento de Arquitectura de Computadores y Sistemas Operativos; España Fil: Rexachs, Dolores. Universidad Autònoma de Barcelona. Departamento de Arquitectura de Computadores y Sistemas Operativos; España Fil: Luque, Emilio. Universidad Autònoma de Barcelona. Departamento de Arquitectura de Computadores y Sistemas Operativos; España Abstract: We propose a methodology for calibrating a physical system simulator and whose computational model represents its events in time series. The methodology reduces the search space of the fit parameters by exploring a database that contains stored historical events and their corresponding simulator fit parameters. We carry out the symbolic representation of the time series using ordinal patterns to classify the series, which allows us to search and compare by similarity on the stored data of the series represented. This classification strategy allows us to speed up the parameter search process, reduce the computational cost of the adjustment process and consequently improve energy cost savings. The experiences showed a reduction in the computational cost of 29% compared with our tuning methodology proposed in previous research. |
description |
Fil: Trigila, Mariano. Pontificia Universidad Católica Argentina. Facultad de Ingeniería y Ciencias Agrarias; Argentina |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/bookPart info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_3248 info:ar-repo/semantics/parteDeLibro |
format |
bookPart |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
https://repositorio.uca.edu.ar/handle/123456789/17072 978-3-031-36023-7 (impreso) 978-3-031-36024-4 (online) 10.1007/978-3-031-36024-4_49 Trigila, M. et al. Reduction of the computational cost of tuning methodology of a simulator of a physical system [en línea]. En: Mikyška, J. et al. (eds). Computational Science. Lecture notes in Computer Science, vol 10475. Cham : Springer, 2023. doi: 10.1007/978-3-031-36024-4_49. Disponible en: https://repositorio.uca.edu.ar/handle/123456789/17072 |
url |
https://repositorio.uca.edu.ar/handle/123456789/17072 |
identifier_str_mv |
978-3-031-36023-7 (impreso) 978-3-031-36024-4 (online) 10.1007/978-3-031-36024-4_49 Trigila, M. et al. Reduction of the computational cost of tuning methodology of a simulator of a physical system [en línea]. En: Mikyška, J. et al. (eds). Computational Science. Lecture notes in Computer Science, vol 10475. Cham : Springer, 2023. doi: 10.1007/978-3-031-36024-4_49. Disponible en: https://repositorio.uca.edu.ar/handle/123456789/17072 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
En: Mikyška, J. et al. (eds). Computational Science. Lecture notes in Computer Science, vol 10475. Cham : Springer, 2023. reponame:Repositorio Institucional (UCA) instname:Pontificia Universidad Católica Argentina |
reponame_str |
Repositorio Institucional (UCA) |
collection |
Repositorio Institucional (UCA) |
instname_str |
Pontificia Universidad Católica Argentina |
repository.name.fl_str_mv |
Repositorio Institucional (UCA) - Pontificia Universidad Católica Argentina |
repository.mail.fl_str_mv |
claudia_fernandez@uca.edu.ar |
_version_ |
1836638370346827776 |
score |
13.070432 |