Síntesis y caracterización de CZTS para aplicaciones en celdas solares

Autores
Santoro, Edgardo Gabriel
Año de publicación
2013
Idioma
español castellano
Tipo de recurso
tesis de grado
Estado
versión borrador
Colaborador/a o director/a de tesis
Vázquez, Marcela
Descripción
Con el objetivo de producir celdas solares fotovoltaicas más eficientes, de bajo costo y amigables con el medio ambiente, se están desarrollando permanentemente nuevos materiales. En este trabajo se sintetizó un semiconductor tipo p denominado CZTS (Cu2SnZnS4) utilizado como capa absorbedora de la radiación solar en las celdas solares de película delgada. Se eligió un método de deposición de bajo costo denominado rocío pirolítico. Entre sus principales ventajas se pueden mencionar: no requiere vacío, equipamiento económico, fácilmente llevado a escala industrial, buen control sobre estequiometría, permite grandes áreas de deposición y con geometrías intrincadas. El objetivo de este trabajo es optimizar la deposición de CZTS identificando las variables experimentales que permitan obtener películas con adecuada microestructura, morfología y propiedades opto-electrónicas. Se seleccionaron los siguientes parámetros para analizar: temperatura de deposición (325 ºC, 375 ºC y 425 ºC), sustrato (vidrio y FTO), postratamiento de película (recocido a 500 ºC durante 1 hora en atmosfera de Ar y de azufre). La cristalinidad, morfología y estequiometría de las películas se caracterizaron por difracción de rayos X (DRX), espectroscopia Raman y microscopia electrónica de barrido (SEM) y análisis por energía dispersiva de electrones (EDS). Se realizaron ensayos fotoelectroquímicos y de espectroscopía UV-Visible para obtener propiedades eléctricas y ópticas. La obtención de CZTS en todas las condiciones analizadas fue demostrada por DRX y Raman, con un importante incremento en la cristalinidad a mayores temperaturas de deposición o luego de un postratamiento. Se detectó con Raman la presencia de Cu2S como fase secundaria en todos los casos aplicados. El tamaño medio de cristalita calculado se encuentra en el rango de 7 a 85 nm. La composición química de las películas fue muy cercana a la estequiométrica en todos los casos, no hubo una mejora sustancial posterior a los tratamientos térmicos. Se observó mediante SEM una cobertura total del sustrato, no se percibió ninguna morfología particular de la estructura depositada, ni diferencias en las películas obtenidas a las distintas temperaturas analizadas. Posterior a un sulfurizado o recocido en Ar, hubo un importante crecimiento del tamaño de grano dependiente del tipo de tratamiento térmico. El espesor del depósito medido con FIB-SEM fue de 1,45 μm. El band gap calculado de las películas se encuentra en el rango de 1,3 a 1,6 eV, en buen acuerdo con los valores que se han reportado para el mismo material preparado por otras técnicas. Los ensayos fotoelectroquímicos revelaron que las películas son tipo p.
Fil: Santoro, Edgardo Gabriel. Universidad Nacional de Mar del Plata. Facultad de Ingeniería; Argentina
Materia
Celdas solares fotovoltáicas
Semiconductor tipo p CZTS
Rocío pirolítico
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/4.0/
Repositorio
Repositorio Institucional Facultad de Ingeniería - UNMDP
Institución
Universidad Nacional de Mar del Plata. Facultad de Ingeniería
OAI Identificador
oai:rinfi.fi.mdp.edu.ar:123456789/288

id RINFIUNMDP_232a362efd6bd0b75b3907554db8ee49
oai_identifier_str oai:rinfi.fi.mdp.edu.ar:123456789/288
network_acronym_str RINFIUNMDP
repository_id_str
network_name_str Repositorio Institucional Facultad de Ingeniería - UNMDP
spelling Síntesis y caracterización de CZTS para aplicaciones en celdas solaresSantoro, Edgardo GabrielCeldas solares fotovoltáicasSemiconductor tipo p CZTSRocío pirolíticoCon el objetivo de producir celdas solares fotovoltaicas más eficientes, de bajo costo y amigables con el medio ambiente, se están desarrollando permanentemente nuevos materiales. En este trabajo se sintetizó un semiconductor tipo p denominado CZTS (Cu2SnZnS4) utilizado como capa absorbedora de la radiación solar en las celdas solares de película delgada. Se eligió un método de deposición de bajo costo denominado rocío pirolítico. Entre sus principales ventajas se pueden mencionar: no requiere vacío, equipamiento económico, fácilmente llevado a escala industrial, buen control sobre estequiometría, permite grandes áreas de deposición y con geometrías intrincadas. El objetivo de este trabajo es optimizar la deposición de CZTS identificando las variables experimentales que permitan obtener películas con adecuada microestructura, morfología y propiedades opto-electrónicas. Se seleccionaron los siguientes parámetros para analizar: temperatura de deposición (325 ºC, 375 ºC y 425 ºC), sustrato (vidrio y FTO), postratamiento de película (recocido a 500 ºC durante 1 hora en atmosfera de Ar y de azufre). La cristalinidad, morfología y estequiometría de las películas se caracterizaron por difracción de rayos X (DRX), espectroscopia Raman y microscopia electrónica de barrido (SEM) y análisis por energía dispersiva de electrones (EDS). Se realizaron ensayos fotoelectroquímicos y de espectroscopía UV-Visible para obtener propiedades eléctricas y ópticas. La obtención de CZTS en todas las condiciones analizadas fue demostrada por DRX y Raman, con un importante incremento en la cristalinidad a mayores temperaturas de deposición o luego de un postratamiento. Se detectó con Raman la presencia de Cu2S como fase secundaria en todos los casos aplicados. El tamaño medio de cristalita calculado se encuentra en el rango de 7 a 85 nm. La composición química de las películas fue muy cercana a la estequiométrica en todos los casos, no hubo una mejora sustancial posterior a los tratamientos térmicos. Se observó mediante SEM una cobertura total del sustrato, no se percibió ninguna morfología particular de la estructura depositada, ni diferencias en las películas obtenidas a las distintas temperaturas analizadas. Posterior a un sulfurizado o recocido en Ar, hubo un importante crecimiento del tamaño de grano dependiente del tipo de tratamiento térmico. El espesor del depósito medido con FIB-SEM fue de 1,45 μm. El band gap calculado de las películas se encuentra en el rango de 1,3 a 1,6 eV, en buen acuerdo con los valores que se han reportado para el mismo material preparado por otras técnicas. Los ensayos fotoelectroquímicos revelaron que las películas son tipo p.Fil: Santoro, Edgardo Gabriel. Universidad Nacional de Mar del Plata. Facultad de Ingeniería; ArgentinaUniversidad Nacional de Mar del Plata. Facultad de Ingeniería. ArgentinaVázquez, Marcela2013-03-01Thesisinfo:eu-repo/semantics/draftinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1finfo:ar-repo/semantics/tesisDeGradoapplication/pdfhttp://rinfi.fi.mdp.edu.ar/xmlui/handle/123456789/288spainfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/reponame:Repositorio Institucional Facultad de Ingeniería - UNMDPinstname:Universidad Nacional de Mar del Plata. Facultad de Ingeniería2025-09-29T15:02:37Zoai:rinfi.fi.mdp.edu.ar:123456789/288instacron:FI-UNMDPInstitucionalhttps://rinfi.fi.mdp.edu.ar/Universidad públicahttps://www.fi.mdp.edu.ar/https://rinfi.fi.mdp.edu.ar/oai/snrdjosemrvs@fi.mdp.edu.arArgentinaopendoar:2025-09-29 15:02:37.441Repositorio Institucional Facultad de Ingeniería - UNMDP - Universidad Nacional de Mar del Plata. Facultad de Ingenieríafalse
dc.title.none.fl_str_mv Síntesis y caracterización de CZTS para aplicaciones en celdas solares
title Síntesis y caracterización de CZTS para aplicaciones en celdas solares
spellingShingle Síntesis y caracterización de CZTS para aplicaciones en celdas solares
Santoro, Edgardo Gabriel
Celdas solares fotovoltáicas
Semiconductor tipo p CZTS
Rocío pirolítico
title_short Síntesis y caracterización de CZTS para aplicaciones en celdas solares
title_full Síntesis y caracterización de CZTS para aplicaciones en celdas solares
title_fullStr Síntesis y caracterización de CZTS para aplicaciones en celdas solares
title_full_unstemmed Síntesis y caracterización de CZTS para aplicaciones en celdas solares
title_sort Síntesis y caracterización de CZTS para aplicaciones en celdas solares
dc.creator.none.fl_str_mv Santoro, Edgardo Gabriel
author Santoro, Edgardo Gabriel
author_facet Santoro, Edgardo Gabriel
author_role author
dc.contributor.none.fl_str_mv Vázquez, Marcela
dc.subject.none.fl_str_mv Celdas solares fotovoltáicas
Semiconductor tipo p CZTS
Rocío pirolítico
topic Celdas solares fotovoltáicas
Semiconductor tipo p CZTS
Rocío pirolítico
dc.description.none.fl_txt_mv Con el objetivo de producir celdas solares fotovoltaicas más eficientes, de bajo costo y amigables con el medio ambiente, se están desarrollando permanentemente nuevos materiales. En este trabajo se sintetizó un semiconductor tipo p denominado CZTS (Cu2SnZnS4) utilizado como capa absorbedora de la radiación solar en las celdas solares de película delgada. Se eligió un método de deposición de bajo costo denominado rocío pirolítico. Entre sus principales ventajas se pueden mencionar: no requiere vacío, equipamiento económico, fácilmente llevado a escala industrial, buen control sobre estequiometría, permite grandes áreas de deposición y con geometrías intrincadas. El objetivo de este trabajo es optimizar la deposición de CZTS identificando las variables experimentales que permitan obtener películas con adecuada microestructura, morfología y propiedades opto-electrónicas. Se seleccionaron los siguientes parámetros para analizar: temperatura de deposición (325 ºC, 375 ºC y 425 ºC), sustrato (vidrio y FTO), postratamiento de película (recocido a 500 ºC durante 1 hora en atmosfera de Ar y de azufre). La cristalinidad, morfología y estequiometría de las películas se caracterizaron por difracción de rayos X (DRX), espectroscopia Raman y microscopia electrónica de barrido (SEM) y análisis por energía dispersiva de electrones (EDS). Se realizaron ensayos fotoelectroquímicos y de espectroscopía UV-Visible para obtener propiedades eléctricas y ópticas. La obtención de CZTS en todas las condiciones analizadas fue demostrada por DRX y Raman, con un importante incremento en la cristalinidad a mayores temperaturas de deposición o luego de un postratamiento. Se detectó con Raman la presencia de Cu2S como fase secundaria en todos los casos aplicados. El tamaño medio de cristalita calculado se encuentra en el rango de 7 a 85 nm. La composición química de las películas fue muy cercana a la estequiométrica en todos los casos, no hubo una mejora sustancial posterior a los tratamientos térmicos. Se observó mediante SEM una cobertura total del sustrato, no se percibió ninguna morfología particular de la estructura depositada, ni diferencias en las películas obtenidas a las distintas temperaturas analizadas. Posterior a un sulfurizado o recocido en Ar, hubo un importante crecimiento del tamaño de grano dependiente del tipo de tratamiento térmico. El espesor del depósito medido con FIB-SEM fue de 1,45 μm. El band gap calculado de las películas se encuentra en el rango de 1,3 a 1,6 eV, en buen acuerdo con los valores que se han reportado para el mismo material preparado por otras técnicas. Los ensayos fotoelectroquímicos revelaron que las películas son tipo p.
Fil: Santoro, Edgardo Gabriel. Universidad Nacional de Mar del Plata. Facultad de Ingeniería; Argentina
description Con el objetivo de producir celdas solares fotovoltaicas más eficientes, de bajo costo y amigables con el medio ambiente, se están desarrollando permanentemente nuevos materiales. En este trabajo se sintetizó un semiconductor tipo p denominado CZTS (Cu2SnZnS4) utilizado como capa absorbedora de la radiación solar en las celdas solares de película delgada. Se eligió un método de deposición de bajo costo denominado rocío pirolítico. Entre sus principales ventajas se pueden mencionar: no requiere vacío, equipamiento económico, fácilmente llevado a escala industrial, buen control sobre estequiometría, permite grandes áreas de deposición y con geometrías intrincadas. El objetivo de este trabajo es optimizar la deposición de CZTS identificando las variables experimentales que permitan obtener películas con adecuada microestructura, morfología y propiedades opto-electrónicas. Se seleccionaron los siguientes parámetros para analizar: temperatura de deposición (325 ºC, 375 ºC y 425 ºC), sustrato (vidrio y FTO), postratamiento de película (recocido a 500 ºC durante 1 hora en atmosfera de Ar y de azufre). La cristalinidad, morfología y estequiometría de las películas se caracterizaron por difracción de rayos X (DRX), espectroscopia Raman y microscopia electrónica de barrido (SEM) y análisis por energía dispersiva de electrones (EDS). Se realizaron ensayos fotoelectroquímicos y de espectroscopía UV-Visible para obtener propiedades eléctricas y ópticas. La obtención de CZTS en todas las condiciones analizadas fue demostrada por DRX y Raman, con un importante incremento en la cristalinidad a mayores temperaturas de deposición o luego de un postratamiento. Se detectó con Raman la presencia de Cu2S como fase secundaria en todos los casos aplicados. El tamaño medio de cristalita calculado se encuentra en el rango de 7 a 85 nm. La composición química de las películas fue muy cercana a la estequiométrica en todos los casos, no hubo una mejora sustancial posterior a los tratamientos térmicos. Se observó mediante SEM una cobertura total del sustrato, no se percibió ninguna morfología particular de la estructura depositada, ni diferencias en las películas obtenidas a las distintas temperaturas analizadas. Posterior a un sulfurizado o recocido en Ar, hubo un importante crecimiento del tamaño de grano dependiente del tipo de tratamiento térmico. El espesor del depósito medido con FIB-SEM fue de 1,45 μm. El band gap calculado de las películas se encuentra en el rango de 1,3 a 1,6 eV, en buen acuerdo con los valores que se han reportado para el mismo material preparado por otras técnicas. Los ensayos fotoelectroquímicos revelaron que las películas son tipo p.
publishDate 2013
dc.date.none.fl_str_mv 2013-03-01
dc.type.none.fl_str_mv Thesis
info:eu-repo/semantics/draft
info:eu-repo/semantics/bachelorThesis
http://purl.org/coar/resource_type/c_7a1f
info:ar-repo/semantics/tesisDeGrado
status_str draft
format bachelorThesis
dc.identifier.none.fl_str_mv http://rinfi.fi.mdp.edu.ar/xmlui/handle/123456789/288
url http://rinfi.fi.mdp.edu.ar/xmlui/handle/123456789/288
dc.language.none.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Argentina
publisher.none.fl_str_mv Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Argentina
dc.source.none.fl_str_mv reponame:Repositorio Institucional Facultad de Ingeniería - UNMDP
instname:Universidad Nacional de Mar del Plata. Facultad de Ingeniería
reponame_str Repositorio Institucional Facultad de Ingeniería - UNMDP
collection Repositorio Institucional Facultad de Ingeniería - UNMDP
instname_str Universidad Nacional de Mar del Plata. Facultad de Ingeniería
repository.name.fl_str_mv Repositorio Institucional Facultad de Ingeniería - UNMDP - Universidad Nacional de Mar del Plata. Facultad de Ingeniería
repository.mail.fl_str_mv josemrvs@fi.mdp.edu.ar
_version_ 1844623359621464064
score 12.559606