Fully inkjet-printed biosensors fabricated with a highly stable ink based on carbon nanotubes and enzyme-functionalized nanoparticles

Autores
Mass, M.; Veiga, L. S.; Garate, O.; Longinotti, G.; Moya, A.; Ramón, E.; Villa, R.; Ybarra, G.; Gabriel, G.
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Enzyme inks can be inkjet printed to fabricate enzymatic biosensors. However, inks containing enzymes present a low shelf life because enzymes in suspension rapidly lose their catalytic activity. Other major problems of printing these inks are the non-specific adsorption of enzymes onto the chamber walls and stability loss during printing as a result of thermal and/or mechanical stress. It is well known that the catalytic activity can be preserved for significantly longer periods of time and to harsher operational conditions when enzymes are immobilized onto adequate surfaces. Therefore, in this work, horseradish peroxidase was covalently immobilized onto silica nanoparticles. Then, the nanoparticles were mixed into an aqueous ink containing single walled carbon nanotubes. Electrodes printed with this specially formulated ink were characterized, and enzyme electrodes were printed. To test the performance of the enzyme electrodes, a complete amperometric hydrogen peroxide biosensor was fabricated by inkjet printing. The electrochemical response of the printed electrodes was evaluated by cyclic voltammetry in solutions containing redox species, such as hexacyanoferrate (III/II) ions or hydroquinone. The response of the enzyme electrodes was studied for the amperometric determination of hydrogen peroxide. Three months after the ink preparation, the printed enzyme electrodes were found to still exhibit similar sensitivity, demonstrating that catalytic activity is preserved in the proposed ink. Thus, enzyme electrodes can be successfully printed employing highly stable formulation using nanoparticles as carriers.
Fil: Mass, M. Instituto Nacional de Tecnología Industrial. INTI-Micro y Nanotecnologías; Argentina
Fil: Veiga, L. S. Instituto Nacional de Tecnología Industrial. INTI-Micro y Nanotecnologías; Argentina
Fil: Garate, O. Instituto Nacional de Tecnología Industrial. INTI-Micro y Nanotecnologías; Argentina
Fil: Longinotti, G. Instituto Nacional de Tecnología Industrial. INTI-Micro y Nanotecnologías; Argentina
Fil: Moya, A. Consejo Superior de Investigaciones Científicas. Centro Nacional de Microelectrónica. Institut de Microelectrònica de Barcelona; España
Fil: Ramón, E. Consejo Superior de Investigaciones Científicas. Centro Nacional de Microelectrónica. Institut de Microelectrònica de Barcelona; España
Fil: Villa, R. Consejo Superior de Investigaciones Científicas. Centro Nacional de Microelectrónica. Institut de Microelectrònica de Barcelona; España
Fil: Ybarra, G. Instituto Nacional de Tecnología Industrial. INTI-Micro y Nanotecnologías; Argentina
Fil: Gabriel, G. Consejo Superior de Investigaciones Científicas. Centro Nacional de Microelectrónica. Institut de Microelectrònica de Barcelona; España
Fuente
Nanomaterials, 11(7)
Materia
Biosensores
Métodos electroquímicos
Impresiones
Tintas
Nanotubos de carbono
Nanopartículas
Silicio
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/4.0/
Repositorio
Repositorio Institucional del Instituto Nacional de Tecnología Industrial (INTI)
Institución
Instituto Nacional de Tecnología Industrial
OAI Identificador
nuevadc:Mass2021Inkjet_pdf

id RIINTI_6173556ec20262ee501afaf3990e442f
oai_identifier_str nuevadc:Mass2021Inkjet_pdf
network_acronym_str RIINTI
repository_id_str
network_name_str Repositorio Institucional del Instituto Nacional de Tecnología Industrial (INTI)
spelling Fully inkjet-printed biosensors fabricated with a highly stable ink based on carbon nanotubes and enzyme-functionalized nanoparticlesMass, M.Veiga, L. S.Garate, O.Longinotti, G.Moya, A.Ramón, E.Villa, R.Ybarra, G.Gabriel, G.BiosensoresMétodos electroquímicosImpresionesTintasNanotubos de carbonoNanopartículasSilicioEnzyme inks can be inkjet printed to fabricate enzymatic biosensors. However, inks containing enzymes present a low shelf life because enzymes in suspension rapidly lose their catalytic activity. Other major problems of printing these inks are the non-specific adsorption of enzymes onto the chamber walls and stability loss during printing as a result of thermal and/or mechanical stress. It is well known that the catalytic activity can be preserved for significantly longer periods of time and to harsher operational conditions when enzymes are immobilized onto adequate surfaces. Therefore, in this work, horseradish peroxidase was covalently immobilized onto silica nanoparticles. Then, the nanoparticles were mixed into an aqueous ink containing single walled carbon nanotubes. Electrodes printed with this specially formulated ink were characterized, and enzyme electrodes were printed. To test the performance of the enzyme electrodes, a complete amperometric hydrogen peroxide biosensor was fabricated by inkjet printing. The electrochemical response of the printed electrodes was evaluated by cyclic voltammetry in solutions containing redox species, such as hexacyanoferrate (III/II) ions or hydroquinone. The response of the enzyme electrodes was studied for the amperometric determination of hydrogen peroxide. Three months after the ink preparation, the printed enzyme electrodes were found to still exhibit similar sensitivity, demonstrating that catalytic activity is preserved in the proposed ink. Thus, enzyme electrodes can be successfully printed employing highly stable formulation using nanoparticles as carriers.Fil: Mass, M. Instituto Nacional de Tecnología Industrial. INTI-Micro y Nanotecnologías; ArgentinaFil: Veiga, L. S. Instituto Nacional de Tecnología Industrial. INTI-Micro y Nanotecnologías; ArgentinaFil: Garate, O. Instituto Nacional de Tecnología Industrial. INTI-Micro y Nanotecnologías; ArgentinaFil: Longinotti, G. Instituto Nacional de Tecnología Industrial. INTI-Micro y Nanotecnologías; ArgentinaFil: Moya, A. Consejo Superior de Investigaciones Científicas. Centro Nacional de Microelectrónica. Institut de Microelectrònica de Barcelona; EspañaFil: Ramón, E. Consejo Superior de Investigaciones Científicas. Centro Nacional de Microelectrónica. Institut de Microelectrònica de Barcelona; EspañaFil: Villa, R. Consejo Superior de Investigaciones Científicas. Centro Nacional de Microelectrónica. Institut de Microelectrònica de Barcelona; EspañaFil: Ybarra, G. Instituto Nacional de Tecnología Industrial. INTI-Micro y Nanotecnologías; ArgentinaFil: Gabriel, G. Consejo Superior de Investigaciones Científicas. Centro Nacional de Microelectrónica. Institut de Microelectrònica de Barcelona; EspañaMDPI2021info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfMass2021Inkjet.pdfhttps://app.inti.gob.ar/greenstone3/sites/localsite/collect/nuevadc/index/assoc/Mass2021.dir/doc.pdfNanomaterials, 11(7)reponame:Repositorio Institucional del Instituto Nacional de Tecnología Industrial (INTI)instname:Instituto Nacional de Tecnología Industrialenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/openAccess2025-09-04T11:43:01Znuevadc:Mass2021Inkjet_pdfinstacron:INTIInstitucionalhttps://app.inti.gob.ar/greenstone3/biblioOrganismo científico-tecnológicohttps://argentina.gob.ar/intihttps://app.inti.gob.ar/greenstone3/oaiserver?verb=Identifypfalcato@inti.gob.arArgentinaopendoar:2025-09-04 11:43:01.636Repositorio Institucional del Instituto Nacional de Tecnología Industrial (INTI) - Instituto Nacional de Tecnología Industrialfalse
dc.title.none.fl_str_mv Fully inkjet-printed biosensors fabricated with a highly stable ink based on carbon nanotubes and enzyme-functionalized nanoparticles
title Fully inkjet-printed biosensors fabricated with a highly stable ink based on carbon nanotubes and enzyme-functionalized nanoparticles
spellingShingle Fully inkjet-printed biosensors fabricated with a highly stable ink based on carbon nanotubes and enzyme-functionalized nanoparticles
Mass, M.
Biosensores
Métodos electroquímicos
Impresiones
Tintas
Nanotubos de carbono
Nanopartículas
Silicio
title_short Fully inkjet-printed biosensors fabricated with a highly stable ink based on carbon nanotubes and enzyme-functionalized nanoparticles
title_full Fully inkjet-printed biosensors fabricated with a highly stable ink based on carbon nanotubes and enzyme-functionalized nanoparticles
title_fullStr Fully inkjet-printed biosensors fabricated with a highly stable ink based on carbon nanotubes and enzyme-functionalized nanoparticles
title_full_unstemmed Fully inkjet-printed biosensors fabricated with a highly stable ink based on carbon nanotubes and enzyme-functionalized nanoparticles
title_sort Fully inkjet-printed biosensors fabricated with a highly stable ink based on carbon nanotubes and enzyme-functionalized nanoparticles
dc.creator.none.fl_str_mv Mass, M.
Veiga, L. S.
Garate, O.
Longinotti, G.
Moya, A.
Ramón, E.
Villa, R.
Ybarra, G.
Gabriel, G.
author Mass, M.
author_facet Mass, M.
Veiga, L. S.
Garate, O.
Longinotti, G.
Moya, A.
Ramón, E.
Villa, R.
Ybarra, G.
Gabriel, G.
author_role author
author2 Veiga, L. S.
Garate, O.
Longinotti, G.
Moya, A.
Ramón, E.
Villa, R.
Ybarra, G.
Gabriel, G.
author2_role author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Biosensores
Métodos electroquímicos
Impresiones
Tintas
Nanotubos de carbono
Nanopartículas
Silicio
topic Biosensores
Métodos electroquímicos
Impresiones
Tintas
Nanotubos de carbono
Nanopartículas
Silicio
dc.description.none.fl_txt_mv Enzyme inks can be inkjet printed to fabricate enzymatic biosensors. However, inks containing enzymes present a low shelf life because enzymes in suspension rapidly lose their catalytic activity. Other major problems of printing these inks are the non-specific adsorption of enzymes onto the chamber walls and stability loss during printing as a result of thermal and/or mechanical stress. It is well known that the catalytic activity can be preserved for significantly longer periods of time and to harsher operational conditions when enzymes are immobilized onto adequate surfaces. Therefore, in this work, horseradish peroxidase was covalently immobilized onto silica nanoparticles. Then, the nanoparticles were mixed into an aqueous ink containing single walled carbon nanotubes. Electrodes printed with this specially formulated ink were characterized, and enzyme electrodes were printed. To test the performance of the enzyme electrodes, a complete amperometric hydrogen peroxide biosensor was fabricated by inkjet printing. The electrochemical response of the printed electrodes was evaluated by cyclic voltammetry in solutions containing redox species, such as hexacyanoferrate (III/II) ions or hydroquinone. The response of the enzyme electrodes was studied for the amperometric determination of hydrogen peroxide. Three months after the ink preparation, the printed enzyme electrodes were found to still exhibit similar sensitivity, demonstrating that catalytic activity is preserved in the proposed ink. Thus, enzyme electrodes can be successfully printed employing highly stable formulation using nanoparticles as carriers.
Fil: Mass, M. Instituto Nacional de Tecnología Industrial. INTI-Micro y Nanotecnologías; Argentina
Fil: Veiga, L. S. Instituto Nacional de Tecnología Industrial. INTI-Micro y Nanotecnologías; Argentina
Fil: Garate, O. Instituto Nacional de Tecnología Industrial. INTI-Micro y Nanotecnologías; Argentina
Fil: Longinotti, G. Instituto Nacional de Tecnología Industrial. INTI-Micro y Nanotecnologías; Argentina
Fil: Moya, A. Consejo Superior de Investigaciones Científicas. Centro Nacional de Microelectrónica. Institut de Microelectrònica de Barcelona; España
Fil: Ramón, E. Consejo Superior de Investigaciones Científicas. Centro Nacional de Microelectrónica. Institut de Microelectrònica de Barcelona; España
Fil: Villa, R. Consejo Superior de Investigaciones Científicas. Centro Nacional de Microelectrónica. Institut de Microelectrònica de Barcelona; España
Fil: Ybarra, G. Instituto Nacional de Tecnología Industrial. INTI-Micro y Nanotecnologías; Argentina
Fil: Gabriel, G. Consejo Superior de Investigaciones Científicas. Centro Nacional de Microelectrónica. Institut de Microelectrònica de Barcelona; España
description Enzyme inks can be inkjet printed to fabricate enzymatic biosensors. However, inks containing enzymes present a low shelf life because enzymes in suspension rapidly lose their catalytic activity. Other major problems of printing these inks are the non-specific adsorption of enzymes onto the chamber walls and stability loss during printing as a result of thermal and/or mechanical stress. It is well known that the catalytic activity can be preserved for significantly longer periods of time and to harsher operational conditions when enzymes are immobilized onto adequate surfaces. Therefore, in this work, horseradish peroxidase was covalently immobilized onto silica nanoparticles. Then, the nanoparticles were mixed into an aqueous ink containing single walled carbon nanotubes. Electrodes printed with this specially formulated ink were characterized, and enzyme electrodes were printed. To test the performance of the enzyme electrodes, a complete amperometric hydrogen peroxide biosensor was fabricated by inkjet printing. The electrochemical response of the printed electrodes was evaluated by cyclic voltammetry in solutions containing redox species, such as hexacyanoferrate (III/II) ions or hydroquinone. The response of the enzyme electrodes was studied for the amperometric determination of hydrogen peroxide. Three months after the ink preparation, the printed enzyme electrodes were found to still exhibit similar sensitivity, demonstrating that catalytic activity is preserved in the proposed ink. Thus, enzyme electrodes can be successfully printed employing highly stable formulation using nanoparticles as carriers.
publishDate 2021
dc.date.none.fl_str_mv 2021
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv Mass2021Inkjet.pdf
https://app.inti.gob.ar/greenstone3/sites/localsite/collect/nuevadc/index/assoc/Mass2021.dir/doc.pdf
identifier_str_mv Mass2021Inkjet.pdf
url https://app.inti.gob.ar/greenstone3/sites/localsite/collect/nuevadc/index/assoc/Mass2021.dir/doc.pdf
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/4.0/
openAccess
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv MDPI
publisher.none.fl_str_mv MDPI
dc.source.none.fl_str_mv Nanomaterials, 11(7)
reponame:Repositorio Institucional del Instituto Nacional de Tecnología Industrial (INTI)
instname:Instituto Nacional de Tecnología Industrial
reponame_str Repositorio Institucional del Instituto Nacional de Tecnología Industrial (INTI)
collection Repositorio Institucional del Instituto Nacional de Tecnología Industrial (INTI)
instname_str Instituto Nacional de Tecnología Industrial
repository.name.fl_str_mv Repositorio Institucional del Instituto Nacional de Tecnología Industrial (INTI) - Instituto Nacional de Tecnología Industrial
repository.mail.fl_str_mv pfalcato@inti.gob.ar
_version_ 1842346558051319808
score 12.623145