Fully inkjet-printed biosensors fabricated with a highly stable ink based on carbon nanotubes and enzyme-functionalized nanoparticles
- Autores
- Mass, M.; Veiga, L. S.; Garate, O.; Longinotti, G.; Moya, A.; Ramón, E.; Villa, R.; Ybarra, G.; Gabriel, G.
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Enzyme inks can be inkjet printed to fabricate enzymatic biosensors. However, inks containing enzymes present a low shelf life because enzymes in suspension rapidly lose their catalytic activity. Other major problems of printing these inks are the non-specific adsorption of enzymes onto the chamber walls and stability loss during printing as a result of thermal and/or mechanical stress. It is well known that the catalytic activity can be preserved for significantly longer periods of time and to harsher operational conditions when enzymes are immobilized onto adequate surfaces. Therefore, in this work, horseradish peroxidase was covalently immobilized onto silica nanoparticles. Then, the nanoparticles were mixed into an aqueous ink containing single walled carbon nanotubes. Electrodes printed with this specially formulated ink were characterized, and enzyme electrodes were printed. To test the performance of the enzyme electrodes, a complete amperometric hydrogen peroxide biosensor was fabricated by inkjet printing. The electrochemical response of the printed electrodes was evaluated by cyclic voltammetry in solutions containing redox species, such as hexacyanoferrate (III/II) ions or hydroquinone. The response of the enzyme electrodes was studied for the amperometric determination of hydrogen peroxide. Three months after the ink preparation, the printed enzyme electrodes were found to still exhibit similar sensitivity, demonstrating that catalytic activity is preserved in the proposed ink. Thus, enzyme electrodes can be successfully printed employing highly stable formulation using nanoparticles as carriers.
Fil: Mass, M. Instituto Nacional de Tecnología Industrial. INTI-Micro y Nanotecnologías; Argentina
Fil: Veiga, L. S. Instituto Nacional de Tecnología Industrial. INTI-Micro y Nanotecnologías; Argentina
Fil: Garate, O. Instituto Nacional de Tecnología Industrial. INTI-Micro y Nanotecnologías; Argentina
Fil: Longinotti, G. Instituto Nacional de Tecnología Industrial. INTI-Micro y Nanotecnologías; Argentina
Fil: Moya, A. Consejo Superior de Investigaciones Científicas. Centro Nacional de Microelectrónica. Institut de Microelectrònica de Barcelona; España
Fil: Ramón, E. Consejo Superior de Investigaciones Científicas. Centro Nacional de Microelectrónica. Institut de Microelectrònica de Barcelona; España
Fil: Villa, R. Consejo Superior de Investigaciones Científicas. Centro Nacional de Microelectrónica. Institut de Microelectrònica de Barcelona; España
Fil: Ybarra, G. Instituto Nacional de Tecnología Industrial. INTI-Micro y Nanotecnologías; Argentina
Fil: Gabriel, G. Consejo Superior de Investigaciones Científicas. Centro Nacional de Microelectrónica. Institut de Microelectrònica de Barcelona; España - Fuente
- Nanomaterials, 11(7)
- Materia
-
Biosensores
Métodos electroquímicos
Impresiones
Tintas
Nanotubos de carbono
Nanopartículas
Silicio - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/4.0/
- Repositorio
- Institución
- Instituto Nacional de Tecnología Industrial
- OAI Identificador
- nuevadc:Mass2021Inkjet_pdf
Ver los metadatos del registro completo
id |
RIINTI_6173556ec20262ee501afaf3990e442f |
---|---|
oai_identifier_str |
nuevadc:Mass2021Inkjet_pdf |
network_acronym_str |
RIINTI |
repository_id_str |
|
network_name_str |
Repositorio Institucional del Instituto Nacional de Tecnología Industrial (INTI) |
spelling |
Fully inkjet-printed biosensors fabricated with a highly stable ink based on carbon nanotubes and enzyme-functionalized nanoparticlesMass, M.Veiga, L. S.Garate, O.Longinotti, G.Moya, A.Ramón, E.Villa, R.Ybarra, G.Gabriel, G.BiosensoresMétodos electroquímicosImpresionesTintasNanotubos de carbonoNanopartículasSilicioEnzyme inks can be inkjet printed to fabricate enzymatic biosensors. However, inks containing enzymes present a low shelf life because enzymes in suspension rapidly lose their catalytic activity. Other major problems of printing these inks are the non-specific adsorption of enzymes onto the chamber walls and stability loss during printing as a result of thermal and/or mechanical stress. It is well known that the catalytic activity can be preserved for significantly longer periods of time and to harsher operational conditions when enzymes are immobilized onto adequate surfaces. Therefore, in this work, horseradish peroxidase was covalently immobilized onto silica nanoparticles. Then, the nanoparticles were mixed into an aqueous ink containing single walled carbon nanotubes. Electrodes printed with this specially formulated ink were characterized, and enzyme electrodes were printed. To test the performance of the enzyme electrodes, a complete amperometric hydrogen peroxide biosensor was fabricated by inkjet printing. The electrochemical response of the printed electrodes was evaluated by cyclic voltammetry in solutions containing redox species, such as hexacyanoferrate (III/II) ions or hydroquinone. The response of the enzyme electrodes was studied for the amperometric determination of hydrogen peroxide. Three months after the ink preparation, the printed enzyme electrodes were found to still exhibit similar sensitivity, demonstrating that catalytic activity is preserved in the proposed ink. Thus, enzyme electrodes can be successfully printed employing highly stable formulation using nanoparticles as carriers.Fil: Mass, M. Instituto Nacional de Tecnología Industrial. INTI-Micro y Nanotecnologías; ArgentinaFil: Veiga, L. S. Instituto Nacional de Tecnología Industrial. INTI-Micro y Nanotecnologías; ArgentinaFil: Garate, O. Instituto Nacional de Tecnología Industrial. INTI-Micro y Nanotecnologías; ArgentinaFil: Longinotti, G. Instituto Nacional de Tecnología Industrial. INTI-Micro y Nanotecnologías; ArgentinaFil: Moya, A. Consejo Superior de Investigaciones Científicas. Centro Nacional de Microelectrónica. Institut de Microelectrònica de Barcelona; EspañaFil: Ramón, E. Consejo Superior de Investigaciones Científicas. Centro Nacional de Microelectrónica. Institut de Microelectrònica de Barcelona; EspañaFil: Villa, R. Consejo Superior de Investigaciones Científicas. Centro Nacional de Microelectrónica. Institut de Microelectrònica de Barcelona; EspañaFil: Ybarra, G. Instituto Nacional de Tecnología Industrial. INTI-Micro y Nanotecnologías; ArgentinaFil: Gabriel, G. Consejo Superior de Investigaciones Científicas. Centro Nacional de Microelectrónica. Institut de Microelectrònica de Barcelona; EspañaMDPI2021info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfMass2021Inkjet.pdfhttps://app.inti.gob.ar/greenstone3/sites/localsite/collect/nuevadc/index/assoc/Mass2021.dir/doc.pdfNanomaterials, 11(7)reponame:Repositorio Institucional del Instituto Nacional de Tecnología Industrial (INTI)instname:Instituto Nacional de Tecnología Industrialenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/openAccess2025-09-04T11:43:01Znuevadc:Mass2021Inkjet_pdfinstacron:INTIInstitucionalhttps://app.inti.gob.ar/greenstone3/biblioOrganismo científico-tecnológicohttps://argentina.gob.ar/intihttps://app.inti.gob.ar/greenstone3/oaiserver?verb=Identifypfalcato@inti.gob.arArgentinaopendoar:2025-09-04 11:43:01.636Repositorio Institucional del Instituto Nacional de Tecnología Industrial (INTI) - Instituto Nacional de Tecnología Industrialfalse |
dc.title.none.fl_str_mv |
Fully inkjet-printed biosensors fabricated with a highly stable ink based on carbon nanotubes and enzyme-functionalized nanoparticles |
title |
Fully inkjet-printed biosensors fabricated with a highly stable ink based on carbon nanotubes and enzyme-functionalized nanoparticles |
spellingShingle |
Fully inkjet-printed biosensors fabricated with a highly stable ink based on carbon nanotubes and enzyme-functionalized nanoparticles Mass, M. Biosensores Métodos electroquímicos Impresiones Tintas Nanotubos de carbono Nanopartículas Silicio |
title_short |
Fully inkjet-printed biosensors fabricated with a highly stable ink based on carbon nanotubes and enzyme-functionalized nanoparticles |
title_full |
Fully inkjet-printed biosensors fabricated with a highly stable ink based on carbon nanotubes and enzyme-functionalized nanoparticles |
title_fullStr |
Fully inkjet-printed biosensors fabricated with a highly stable ink based on carbon nanotubes and enzyme-functionalized nanoparticles |
title_full_unstemmed |
Fully inkjet-printed biosensors fabricated with a highly stable ink based on carbon nanotubes and enzyme-functionalized nanoparticles |
title_sort |
Fully inkjet-printed biosensors fabricated with a highly stable ink based on carbon nanotubes and enzyme-functionalized nanoparticles |
dc.creator.none.fl_str_mv |
Mass, M. Veiga, L. S. Garate, O. Longinotti, G. Moya, A. Ramón, E. Villa, R. Ybarra, G. Gabriel, G. |
author |
Mass, M. |
author_facet |
Mass, M. Veiga, L. S. Garate, O. Longinotti, G. Moya, A. Ramón, E. Villa, R. Ybarra, G. Gabriel, G. |
author_role |
author |
author2 |
Veiga, L. S. Garate, O. Longinotti, G. Moya, A. Ramón, E. Villa, R. Ybarra, G. Gabriel, G. |
author2_role |
author author author author author author author author |
dc.subject.none.fl_str_mv |
Biosensores Métodos electroquímicos Impresiones Tintas Nanotubos de carbono Nanopartículas Silicio |
topic |
Biosensores Métodos electroquímicos Impresiones Tintas Nanotubos de carbono Nanopartículas Silicio |
dc.description.none.fl_txt_mv |
Enzyme inks can be inkjet printed to fabricate enzymatic biosensors. However, inks containing enzymes present a low shelf life because enzymes in suspension rapidly lose their catalytic activity. Other major problems of printing these inks are the non-specific adsorption of enzymes onto the chamber walls and stability loss during printing as a result of thermal and/or mechanical stress. It is well known that the catalytic activity can be preserved for significantly longer periods of time and to harsher operational conditions when enzymes are immobilized onto adequate surfaces. Therefore, in this work, horseradish peroxidase was covalently immobilized onto silica nanoparticles. Then, the nanoparticles were mixed into an aqueous ink containing single walled carbon nanotubes. Electrodes printed with this specially formulated ink were characterized, and enzyme electrodes were printed. To test the performance of the enzyme electrodes, a complete amperometric hydrogen peroxide biosensor was fabricated by inkjet printing. The electrochemical response of the printed electrodes was evaluated by cyclic voltammetry in solutions containing redox species, such as hexacyanoferrate (III/II) ions or hydroquinone. The response of the enzyme electrodes was studied for the amperometric determination of hydrogen peroxide. Three months after the ink preparation, the printed enzyme electrodes were found to still exhibit similar sensitivity, demonstrating that catalytic activity is preserved in the proposed ink. Thus, enzyme electrodes can be successfully printed employing highly stable formulation using nanoparticles as carriers. Fil: Mass, M. Instituto Nacional de Tecnología Industrial. INTI-Micro y Nanotecnologías; Argentina Fil: Veiga, L. S. Instituto Nacional de Tecnología Industrial. INTI-Micro y Nanotecnologías; Argentina Fil: Garate, O. Instituto Nacional de Tecnología Industrial. INTI-Micro y Nanotecnologías; Argentina Fil: Longinotti, G. Instituto Nacional de Tecnología Industrial. INTI-Micro y Nanotecnologías; Argentina Fil: Moya, A. Consejo Superior de Investigaciones Científicas. Centro Nacional de Microelectrónica. Institut de Microelectrònica de Barcelona; España Fil: Ramón, E. Consejo Superior de Investigaciones Científicas. Centro Nacional de Microelectrónica. Institut de Microelectrònica de Barcelona; España Fil: Villa, R. Consejo Superior de Investigaciones Científicas. Centro Nacional de Microelectrónica. Institut de Microelectrònica de Barcelona; España Fil: Ybarra, G. Instituto Nacional de Tecnología Industrial. INTI-Micro y Nanotecnologías; Argentina Fil: Gabriel, G. Consejo Superior de Investigaciones Científicas. Centro Nacional de Microelectrónica. Institut de Microelectrònica de Barcelona; España |
description |
Enzyme inks can be inkjet printed to fabricate enzymatic biosensors. However, inks containing enzymes present a low shelf life because enzymes in suspension rapidly lose their catalytic activity. Other major problems of printing these inks are the non-specific adsorption of enzymes onto the chamber walls and stability loss during printing as a result of thermal and/or mechanical stress. It is well known that the catalytic activity can be preserved for significantly longer periods of time and to harsher operational conditions when enzymes are immobilized onto adequate surfaces. Therefore, in this work, horseradish peroxidase was covalently immobilized onto silica nanoparticles. Then, the nanoparticles were mixed into an aqueous ink containing single walled carbon nanotubes. Electrodes printed with this specially formulated ink were characterized, and enzyme electrodes were printed. To test the performance of the enzyme electrodes, a complete amperometric hydrogen peroxide biosensor was fabricated by inkjet printing. The electrochemical response of the printed electrodes was evaluated by cyclic voltammetry in solutions containing redox species, such as hexacyanoferrate (III/II) ions or hydroquinone. The response of the enzyme electrodes was studied for the amperometric determination of hydrogen peroxide. Three months after the ink preparation, the printed enzyme electrodes were found to still exhibit similar sensitivity, demonstrating that catalytic activity is preserved in the proposed ink. Thus, enzyme electrodes can be successfully printed employing highly stable formulation using nanoparticles as carriers. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
Mass2021Inkjet.pdf https://app.inti.gob.ar/greenstone3/sites/localsite/collect/nuevadc/index/assoc/Mass2021.dir/doc.pdf |
identifier_str_mv |
Mass2021Inkjet.pdf |
url |
https://app.inti.gob.ar/greenstone3/sites/localsite/collect/nuevadc/index/assoc/Mass2021.dir/doc.pdf |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/4.0/ openAccess |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0/ openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
MDPI |
publisher.none.fl_str_mv |
MDPI |
dc.source.none.fl_str_mv |
Nanomaterials, 11(7) reponame:Repositorio Institucional del Instituto Nacional de Tecnología Industrial (INTI) instname:Instituto Nacional de Tecnología Industrial |
reponame_str |
Repositorio Institucional del Instituto Nacional de Tecnología Industrial (INTI) |
collection |
Repositorio Institucional del Instituto Nacional de Tecnología Industrial (INTI) |
instname_str |
Instituto Nacional de Tecnología Industrial |
repository.name.fl_str_mv |
Repositorio Institucional del Instituto Nacional de Tecnología Industrial (INTI) - Instituto Nacional de Tecnología Industrial |
repository.mail.fl_str_mv |
pfalcato@inti.gob.ar |
_version_ |
1842346558051319808 |
score |
12.623145 |