Dynamic flux balance analysis of a genetic engineered cyanobacterium for ethanol production

Autores
Laiglecia, Juan Ignacio; Estrada, Vanina; Vidal, Rebeca; Florencio, Francisco J.; Guerrero, Miguel G.; Díaz, María Soledad
Año de publicación
2013
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
Fil: Laiglecia, Juan Ignacio. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química (PLAPIQUI), CONICET. Bahía Blanca, Argentina
Fil: Estrada, Vanina. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química (PLAPIQUI), CONICET. Bahía Blanca, Argentina
Fil: Vidal, Rebeca. Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC-Universidad de Sevilla. España
Fil: Florencio, Francisco J. Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC-Universidad de Sevilla. España
Fil: Guerrero, Miguel G. Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC-Universidad de Sevilla. España
Fil: Díaz, María Soledad. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química (PLAPIQUI), CONICET. Bahía Blanca, Argentina
We present a Dynamic Flux Balance Analysis approach to study the production of ethanol by a mutant strain of the cyanobacterium Synechocystis sp. PCC 6803 obtained by Vidal. This modified strain harbors the genes pdc and adhB from Zymomonas mobilis under the control of the gene PetE promoter. The model includes two major components: (a) a dynamic model with mass balances for biomass, ethanol, nitrate, phosphate, internal nitrogen and phosphorus [2] , and (b) a steady state genome-scale metabolic Lineal Programming (LP) model of 466 metabolites and 495 metabolic reactions. The biomass equation includes limiting functions for light, temperature and nutrients, kinetics of growth inhibition by ethanol toxicity and the decrease in the available light by biomass concentration increase. For the intracellular representation, we have modified the metabolic model developed by Yoshikawa et al. [3] in order to include the reactions catalyzed by 2-OGDC and SSADH, as it has been recently shown that they close the TCA cycle. We formulate a dynamic optimization problem for ethanol production maximization subject to mass balance equations and the intracellular LP model. The problem is solved in GAMS through a simultaneous optimization approach. The model was validated with data obtained in experiments performed over 73 hours for mutant and wild type strains of Synechocystis in batch liquid cultures. Numerical results provide useful insights on ethanol production by the genetic modified strain within the context of genomic-scale cyanobacterial metabolism.
Materia
Ingeniería, Ciencia y Tecnología
Dynamic Optimization
Ethanol Production
Ingeniería, Ciencia y Tecnología
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
RID-UNRN (UNRN)
Institución
Universidad Nacional de Río Negro
OAI Identificador
oai:rid.unrn.edu.ar:20.500.12049/5968

id RIDUNRN_d49f4916e71f419bf057b98a2f886a6e
oai_identifier_str oai:rid.unrn.edu.ar:20.500.12049/5968
network_acronym_str RIDUNRN
repository_id_str 4369
network_name_str RID-UNRN (UNRN)
spelling Dynamic flux balance analysis of a genetic engineered cyanobacterium for ethanol productionLaiglecia, Juan IgnacioEstrada, VaninaVidal, RebecaFlorencio, Francisco J.Guerrero, Miguel G.Díaz, María SoledadIngeniería, Ciencia y TecnologíaDynamic OptimizationEthanol ProductionIngeniería, Ciencia y TecnologíaFil: Laiglecia, Juan Ignacio. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química (PLAPIQUI), CONICET. Bahía Blanca, ArgentinaFil: Estrada, Vanina. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química (PLAPIQUI), CONICET. Bahía Blanca, ArgentinaFil: Vidal, Rebeca. Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC-Universidad de Sevilla. EspañaFil: Florencio, Francisco J. Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC-Universidad de Sevilla. EspañaFil: Guerrero, Miguel G. Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC-Universidad de Sevilla. EspañaFil: Díaz, María Soledad. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química (PLAPIQUI), CONICET. Bahía Blanca, ArgentinaWe present a Dynamic Flux Balance Analysis approach to study the production of ethanol by a mutant strain of the cyanobacterium Synechocystis sp. PCC 6803 obtained by Vidal. This modified strain harbors the genes pdc and adhB from Zymomonas mobilis under the control of the gene PetE promoter. The model includes two major components: (a) a dynamic model with mass balances for biomass, ethanol, nitrate, phosphate, internal nitrogen and phosphorus [2] , and (b) a steady state genome-scale metabolic Lineal Programming (LP) model of 466 metabolites and 495 metabolic reactions. The biomass equation includes limiting functions for light, temperature and nutrients, kinetics of growth inhibition by ethanol toxicity and the decrease in the available light by biomass concentration increase. For the intracellular representation, we have modified the metabolic model developed by Yoshikawa et al. [3] in order to include the reactions catalyzed by 2-OGDC and SSADH, as it has been recently shown that they close the TCA cycle. We formulate a dynamic optimization problem for ethanol production maximization subject to mass balance equations and the intracellular LP model. The problem is solved in GAMS through a simultaneous optimization approach. The model was validated with data obtained in experiments performed over 73 hours for mutant and wild type strains of Synechocystis in batch liquid cultures. Numerical results provide useful insights on ethanol production by the genetic modified strain within the context of genomic-scale cyanobacterial metabolism.2013-02info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://rid.unrn.edu.ar/handle/20.500.12049/5968engAssociazione Italiana Di Ingegneria Chimicainfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/reponame:RID-UNRN (UNRN)instname:Universidad Nacional de Río Negro2025-09-04T11:12:49Zoai:rid.unrn.edu.ar:20.500.12049/5968instacron:UNRNInstitucionalhttps://rid.unrn.edu.ar/jspui/Universidad públicaNo correspondehttps://rid.unrn.edu.ar/oai/snrdrid@unrn.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:43692025-09-04 11:12:49.329RID-UNRN (UNRN) - Universidad Nacional de Río Negrofalse
dc.title.none.fl_str_mv Dynamic flux balance analysis of a genetic engineered cyanobacterium for ethanol production
title Dynamic flux balance analysis of a genetic engineered cyanobacterium for ethanol production
spellingShingle Dynamic flux balance analysis of a genetic engineered cyanobacterium for ethanol production
Laiglecia, Juan Ignacio
Ingeniería, Ciencia y Tecnología
Dynamic Optimization
Ethanol Production
Ingeniería, Ciencia y Tecnología
title_short Dynamic flux balance analysis of a genetic engineered cyanobacterium for ethanol production
title_full Dynamic flux balance analysis of a genetic engineered cyanobacterium for ethanol production
title_fullStr Dynamic flux balance analysis of a genetic engineered cyanobacterium for ethanol production
title_full_unstemmed Dynamic flux balance analysis of a genetic engineered cyanobacterium for ethanol production
title_sort Dynamic flux balance analysis of a genetic engineered cyanobacterium for ethanol production
dc.creator.none.fl_str_mv Laiglecia, Juan Ignacio
Estrada, Vanina
Vidal, Rebeca
Florencio, Francisco J.
Guerrero, Miguel G.
Díaz, María Soledad
author Laiglecia, Juan Ignacio
author_facet Laiglecia, Juan Ignacio
Estrada, Vanina
Vidal, Rebeca
Florencio, Francisco J.
Guerrero, Miguel G.
Díaz, María Soledad
author_role author
author2 Estrada, Vanina
Vidal, Rebeca
Florencio, Francisco J.
Guerrero, Miguel G.
Díaz, María Soledad
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv Ingeniería, Ciencia y Tecnología
Dynamic Optimization
Ethanol Production
Ingeniería, Ciencia y Tecnología
topic Ingeniería, Ciencia y Tecnología
Dynamic Optimization
Ethanol Production
Ingeniería, Ciencia y Tecnología
dc.description.none.fl_txt_mv Fil: Laiglecia, Juan Ignacio. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química (PLAPIQUI), CONICET. Bahía Blanca, Argentina
Fil: Estrada, Vanina. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química (PLAPIQUI), CONICET. Bahía Blanca, Argentina
Fil: Vidal, Rebeca. Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC-Universidad de Sevilla. España
Fil: Florencio, Francisco J. Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC-Universidad de Sevilla. España
Fil: Guerrero, Miguel G. Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC-Universidad de Sevilla. España
Fil: Díaz, María Soledad. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química (PLAPIQUI), CONICET. Bahía Blanca, Argentina
We present a Dynamic Flux Balance Analysis approach to study the production of ethanol by a mutant strain of the cyanobacterium Synechocystis sp. PCC 6803 obtained by Vidal. This modified strain harbors the genes pdc and adhB from Zymomonas mobilis under the control of the gene PetE promoter. The model includes two major components: (a) a dynamic model with mass balances for biomass, ethanol, nitrate, phosphate, internal nitrogen and phosphorus [2] , and (b) a steady state genome-scale metabolic Lineal Programming (LP) model of 466 metabolites and 495 metabolic reactions. The biomass equation includes limiting functions for light, temperature and nutrients, kinetics of growth inhibition by ethanol toxicity and the decrease in the available light by biomass concentration increase. For the intracellular representation, we have modified the metabolic model developed by Yoshikawa et al. [3] in order to include the reactions catalyzed by 2-OGDC and SSADH, as it has been recently shown that they close the TCA cycle. We formulate a dynamic optimization problem for ethanol production maximization subject to mass balance equations and the intracellular LP model. The problem is solved in GAMS through a simultaneous optimization approach. The model was validated with data obtained in experiments performed over 73 hours for mutant and wild type strains of Synechocystis in batch liquid cultures. Numerical results provide useful insights on ethanol production by the genetic modified strain within the context of genomic-scale cyanobacterial metabolism.
description Fil: Laiglecia, Juan Ignacio. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química (PLAPIQUI), CONICET. Bahía Blanca, Argentina
publishDate 2013
dc.date.none.fl_str_mv 2013-02
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://rid.unrn.edu.ar/handle/20.500.12049/5968
url http://rid.unrn.edu.ar/handle/20.500.12049/5968
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Associazione Italiana Di Ingegneria Chimica
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:RID-UNRN (UNRN)
instname:Universidad Nacional de Río Negro
reponame_str RID-UNRN (UNRN)
collection RID-UNRN (UNRN)
instname_str Universidad Nacional de Río Negro
repository.name.fl_str_mv RID-UNRN (UNRN) - Universidad Nacional de Río Negro
repository.mail.fl_str_mv rid@unrn.edu.ar
_version_ 1842344110752530432
score 12.623145