Dynamic flux balance analysis of a genetic engineered cyanobacterium for ethanol production
- Autores
- Laiglecia, Juan Ignacio; Estrada, Vanina; Vidal, Rebeca; Florencio, Francisco J.; Guerrero, Miguel G.; Díaz, María Soledad
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Fil: Laiglecia, Juan Ignacio. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química (PLAPIQUI), CONICET. Bahía Blanca, Argentina
Fil: Estrada, Vanina. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química (PLAPIQUI), CONICET. Bahía Blanca, Argentina
Fil: Vidal, Rebeca. Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC-Universidad de Sevilla. España
Fil: Florencio, Francisco J. Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC-Universidad de Sevilla. España
Fil: Guerrero, Miguel G. Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC-Universidad de Sevilla. España
Fil: Díaz, María Soledad. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química (PLAPIQUI), CONICET. Bahía Blanca, Argentina
We present a Dynamic Flux Balance Analysis approach to study the production of ethanol by a mutant strain of the cyanobacterium Synechocystis sp. PCC 6803 obtained by Vidal. This modified strain harbors the genes pdc and adhB from Zymomonas mobilis under the control of the gene PetE promoter. The model includes two major components: (a) a dynamic model with mass balances for biomass, ethanol, nitrate, phosphate, internal nitrogen and phosphorus [2] , and (b) a steady state genome-scale metabolic Lineal Programming (LP) model of 466 metabolites and 495 metabolic reactions. The biomass equation includes limiting functions for light, temperature and nutrients, kinetics of growth inhibition by ethanol toxicity and the decrease in the available light by biomass concentration increase. For the intracellular representation, we have modified the metabolic model developed by Yoshikawa et al. [3] in order to include the reactions catalyzed by 2-OGDC and SSADH, as it has been recently shown that they close the TCA cycle. We formulate a dynamic optimization problem for ethanol production maximization subject to mass balance equations and the intracellular LP model. The problem is solved in GAMS through a simultaneous optimization approach. The model was validated with data obtained in experiments performed over 73 hours for mutant and wild type strains of Synechocystis in batch liquid cultures. Numerical results provide useful insights on ethanol production by the genetic modified strain within the context of genomic-scale cyanobacterial metabolism. - Materia
-
Ingeniería, Ciencia y Tecnología
Dynamic Optimization
Ethanol Production
Ingeniería, Ciencia y Tecnología - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de Río Negro
- OAI Identificador
- oai:rid.unrn.edu.ar:20.500.12049/5968
Ver los metadatos del registro completo
id |
RIDUNRN_d49f4916e71f419bf057b98a2f886a6e |
---|---|
oai_identifier_str |
oai:rid.unrn.edu.ar:20.500.12049/5968 |
network_acronym_str |
RIDUNRN |
repository_id_str |
4369 |
network_name_str |
RID-UNRN (UNRN) |
spelling |
Dynamic flux balance analysis of a genetic engineered cyanobacterium for ethanol productionLaiglecia, Juan IgnacioEstrada, VaninaVidal, RebecaFlorencio, Francisco J.Guerrero, Miguel G.Díaz, María SoledadIngeniería, Ciencia y TecnologíaDynamic OptimizationEthanol ProductionIngeniería, Ciencia y TecnologíaFil: Laiglecia, Juan Ignacio. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química (PLAPIQUI), CONICET. Bahía Blanca, ArgentinaFil: Estrada, Vanina. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química (PLAPIQUI), CONICET. Bahía Blanca, ArgentinaFil: Vidal, Rebeca. Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC-Universidad de Sevilla. EspañaFil: Florencio, Francisco J. Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC-Universidad de Sevilla. EspañaFil: Guerrero, Miguel G. Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC-Universidad de Sevilla. EspañaFil: Díaz, María Soledad. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química (PLAPIQUI), CONICET. Bahía Blanca, ArgentinaWe present a Dynamic Flux Balance Analysis approach to study the production of ethanol by a mutant strain of the cyanobacterium Synechocystis sp. PCC 6803 obtained by Vidal. This modified strain harbors the genes pdc and adhB from Zymomonas mobilis under the control of the gene PetE promoter. The model includes two major components: (a) a dynamic model with mass balances for biomass, ethanol, nitrate, phosphate, internal nitrogen and phosphorus [2] , and (b) a steady state genome-scale metabolic Lineal Programming (LP) model of 466 metabolites and 495 metabolic reactions. The biomass equation includes limiting functions for light, temperature and nutrients, kinetics of growth inhibition by ethanol toxicity and the decrease in the available light by biomass concentration increase. For the intracellular representation, we have modified the metabolic model developed by Yoshikawa et al. [3] in order to include the reactions catalyzed by 2-OGDC and SSADH, as it has been recently shown that they close the TCA cycle. We formulate a dynamic optimization problem for ethanol production maximization subject to mass balance equations and the intracellular LP model. The problem is solved in GAMS through a simultaneous optimization approach. The model was validated with data obtained in experiments performed over 73 hours for mutant and wild type strains of Synechocystis in batch liquid cultures. Numerical results provide useful insights on ethanol production by the genetic modified strain within the context of genomic-scale cyanobacterial metabolism.2013-02info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://rid.unrn.edu.ar/handle/20.500.12049/5968engAssociazione Italiana Di Ingegneria Chimicainfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/reponame:RID-UNRN (UNRN)instname:Universidad Nacional de Río Negro2025-09-04T11:12:49Zoai:rid.unrn.edu.ar:20.500.12049/5968instacron:UNRNInstitucionalhttps://rid.unrn.edu.ar/jspui/Universidad públicaNo correspondehttps://rid.unrn.edu.ar/oai/snrdrid@unrn.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:43692025-09-04 11:12:49.329RID-UNRN (UNRN) - Universidad Nacional de Río Negrofalse |
dc.title.none.fl_str_mv |
Dynamic flux balance analysis of a genetic engineered cyanobacterium for ethanol production |
title |
Dynamic flux balance analysis of a genetic engineered cyanobacterium for ethanol production |
spellingShingle |
Dynamic flux balance analysis of a genetic engineered cyanobacterium for ethanol production Laiglecia, Juan Ignacio Ingeniería, Ciencia y Tecnología Dynamic Optimization Ethanol Production Ingeniería, Ciencia y Tecnología |
title_short |
Dynamic flux balance analysis of a genetic engineered cyanobacterium for ethanol production |
title_full |
Dynamic flux balance analysis of a genetic engineered cyanobacterium for ethanol production |
title_fullStr |
Dynamic flux balance analysis of a genetic engineered cyanobacterium for ethanol production |
title_full_unstemmed |
Dynamic flux balance analysis of a genetic engineered cyanobacterium for ethanol production |
title_sort |
Dynamic flux balance analysis of a genetic engineered cyanobacterium for ethanol production |
dc.creator.none.fl_str_mv |
Laiglecia, Juan Ignacio Estrada, Vanina Vidal, Rebeca Florencio, Francisco J. Guerrero, Miguel G. Díaz, María Soledad |
author |
Laiglecia, Juan Ignacio |
author_facet |
Laiglecia, Juan Ignacio Estrada, Vanina Vidal, Rebeca Florencio, Francisco J. Guerrero, Miguel G. Díaz, María Soledad |
author_role |
author |
author2 |
Estrada, Vanina Vidal, Rebeca Florencio, Francisco J. Guerrero, Miguel G. Díaz, María Soledad |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
Ingeniería, Ciencia y Tecnología Dynamic Optimization Ethanol Production Ingeniería, Ciencia y Tecnología |
topic |
Ingeniería, Ciencia y Tecnología Dynamic Optimization Ethanol Production Ingeniería, Ciencia y Tecnología |
dc.description.none.fl_txt_mv |
Fil: Laiglecia, Juan Ignacio. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química (PLAPIQUI), CONICET. Bahía Blanca, Argentina Fil: Estrada, Vanina. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química (PLAPIQUI), CONICET. Bahía Blanca, Argentina Fil: Vidal, Rebeca. Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC-Universidad de Sevilla. España Fil: Florencio, Francisco J. Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC-Universidad de Sevilla. España Fil: Guerrero, Miguel G. Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC-Universidad de Sevilla. España Fil: Díaz, María Soledad. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química (PLAPIQUI), CONICET. Bahía Blanca, Argentina We present a Dynamic Flux Balance Analysis approach to study the production of ethanol by a mutant strain of the cyanobacterium Synechocystis sp. PCC 6803 obtained by Vidal. This modified strain harbors the genes pdc and adhB from Zymomonas mobilis under the control of the gene PetE promoter. The model includes two major components: (a) a dynamic model with mass balances for biomass, ethanol, nitrate, phosphate, internal nitrogen and phosphorus [2] , and (b) a steady state genome-scale metabolic Lineal Programming (LP) model of 466 metabolites and 495 metabolic reactions. The biomass equation includes limiting functions for light, temperature and nutrients, kinetics of growth inhibition by ethanol toxicity and the decrease in the available light by biomass concentration increase. For the intracellular representation, we have modified the metabolic model developed by Yoshikawa et al. [3] in order to include the reactions catalyzed by 2-OGDC and SSADH, as it has been recently shown that they close the TCA cycle. We formulate a dynamic optimization problem for ethanol production maximization subject to mass balance equations and the intracellular LP model. The problem is solved in GAMS through a simultaneous optimization approach. The model was validated with data obtained in experiments performed over 73 hours for mutant and wild type strains of Synechocystis in batch liquid cultures. Numerical results provide useful insights on ethanol production by the genetic modified strain within the context of genomic-scale cyanobacterial metabolism. |
description |
Fil: Laiglecia, Juan Ignacio. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química (PLAPIQUI), CONICET. Bahía Blanca, Argentina |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://rid.unrn.edu.ar/handle/20.500.12049/5968 |
url |
http://rid.unrn.edu.ar/handle/20.500.12049/5968 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Associazione Italiana Di Ingegneria Chimica |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:RID-UNRN (UNRN) instname:Universidad Nacional de Río Negro |
reponame_str |
RID-UNRN (UNRN) |
collection |
RID-UNRN (UNRN) |
instname_str |
Universidad Nacional de Río Negro |
repository.name.fl_str_mv |
RID-UNRN (UNRN) - Universidad Nacional de Río Negro |
repository.mail.fl_str_mv |
rid@unrn.edu.ar |
_version_ |
1842344110752530432 |
score |
12.623145 |