Bayesian inversion of joint SH seismic and seismoelectric data to infer glacier system properties

Autores
Macchioli Grande, Franco; Zyserman, Fabio; Monachesi, Leonardo Bruno; Jouniaux, Laurence; Rosas Carbajal, Marina
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Fil: Macchioli Grande, Franco. CONICET, Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata; Argentina.
Fil: Zyserman, Fabio. CONICET, Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata; Argentina.
Fil: Monachesi, Leonardo. Universidad Nacional de Río Negro. Instituto de Investigación en Paleobiología y Geología. Río Negro, Argentina.
Fil: Jouniaux, Laurence. Institut de Physique du Globe de Strasbourg (UMR 7516), Université de Strasbourg et CNRS, Strasbourg; Francia.
Fil: Rosas Carbajal, Marina. Institut de Physique du Globe de Paris; Francia.
In glacial studies, properties such as glacier thickness and the basement permeability and porosity are key to understand the hydrological and mechanical behaviour of the system. The seismoelectric method could potentially be used to determine key properties of glacial environments. Here we analytically model the generation of seismic and seismoelectric signals by means of a shear horizontal seismic wave source on top of a glacier overlying a porous basement. Considering a one-dimensional setting, we compute the seismic waves and the electrokinetically induced electric field. We then analyse the sensitivity of the seismic and electromagnetic data to relevant model parameters, namely depth of the glacier bottom, porosity, permeability, shear modulus and saturating water salinity of the glacier basement. Moreover, we study the possibility of inferring these key parameters from a set of very low noise synthetic data, adopting a Bayesian framework to pay particular attention to the uncertainty of the model parameters mentioned above. We tackle the resolution of the probabilistic inverse problem with two strategies: (1) we compute the marginal posterior distributions of each model parameter solving multidimensional integrals numerically and (2) we use a Markov chain Monte Carlo algorithm to retrieve a collection of model parameters that follows the posterior probability density function of the model parameters, given the synthetic data set. Both methodologies are able to obtain the marginal distributions of the parameters and estimate their mean and standard deviation. The Markov chain Monte Carlo algorithm performs better in terms of numerical stability and number of iterations needed to characterize the distributions. The inversion of seismic data alone is not able to constrain the values of porosity and permeability further than the prior distribution. In turn, the inversion of the electric data alone, and the joint inversion of seismic and electric data are useful to constrain these parameters as well as other glacial system properties. Furthermore, the joint inversion reduces the uncertainty of the model parameters estimates and provides more accurate results.
-
Materia
Ciencias Exactas y Naturales
Electromagnetics
Inversion
Modelling
Parameter Estimation
Seismics
Ciencias Exactas y Naturales
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
RID-UNRN (UNRN)
Institución
Universidad Nacional de Río Negro
OAI Identificador
oai:rid.unrn.edu.ar:20.500.12049/5796

id RIDUNRN_9ea37aa428f297f6cde33b2b870ccc01
oai_identifier_str oai:rid.unrn.edu.ar:20.500.12049/5796
network_acronym_str RIDUNRN
repository_id_str 4369
network_name_str RID-UNRN (UNRN)
spelling Bayesian inversion of joint SH seismic and seismoelectric data to infer glacier system propertiesMacchioli Grande, FrancoZyserman, FabioMonachesi, Leonardo BrunoJouniaux, LaurenceRosas Carbajal, MarinaCiencias Exactas y NaturalesElectromagneticsInversionModellingParameter EstimationSeismicsCiencias Exactas y NaturalesFil: Macchioli Grande, Franco. CONICET, Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata; Argentina.Fil: Zyserman, Fabio. CONICET, Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata; Argentina.Fil: Monachesi, Leonardo. Universidad Nacional de Río Negro. Instituto de Investigación en Paleobiología y Geología. Río Negro, Argentina.Fil: Jouniaux, Laurence. Institut de Physique du Globe de Strasbourg (UMR 7516), Université de Strasbourg et CNRS, Strasbourg; Francia.Fil: Rosas Carbajal, Marina. Institut de Physique du Globe de Paris; Francia.In glacial studies, properties such as glacier thickness and the basement permeability and porosity are key to understand the hydrological and mechanical behaviour of the system. The seismoelectric method could potentially be used to determine key properties of glacial environments. Here we analytically model the generation of seismic and seismoelectric signals by means of a shear horizontal seismic wave source on top of a glacier overlying a porous basement. Considering a one-dimensional setting, we compute the seismic waves and the electrokinetically induced electric field. We then analyse the sensitivity of the seismic and electromagnetic data to relevant model parameters, namely depth of the glacier bottom, porosity, permeability, shear modulus and saturating water salinity of the glacier basement. Moreover, we study the possibility of inferring these key parameters from a set of very low noise synthetic data, adopting a Bayesian framework to pay particular attention to the uncertainty of the model parameters mentioned above. We tackle the resolution of the probabilistic inverse problem with two strategies: (1) we compute the marginal posterior distributions of each model parameter solving multidimensional integrals numerically and (2) we use a Markov chain Monte Carlo algorithm to retrieve a collection of model parameters that follows the posterior probability density function of the model parameters, given the synthetic data set. Both methodologies are able to obtain the marginal distributions of the parameters and estimate their mean and standard deviation. The Markov chain Monte Carlo algorithm performs better in terms of numerical stability and number of iterations needed to characterize the distributions. The inversion of seismic data alone is not able to constrain the values of porosity and permeability further than the prior distribution. In turn, the inversion of the electric data alone, and the joint inversion of seismic and electric data are useful to constrain these parameters as well as other glacial system properties. Furthermore, the joint inversion reduces the uncertainty of the model parameters estimates and provides more accurate results.-European Association of Geoscientists & Engineers2020info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfMacchioli Grande, F., Zyserman, F., Monachesi, L.B., Jouniaux, L. and Rosas Carbajal, M., (2020). Bayesian inversion of joint SH seismic and seismoelectric data to infer glacier system properties. Geophysical prospecting; European Association of Geoscientists & Engineers; 68 (5); 1633-16560016-80251365-2478https://onlinelibrary.wiley.com/doi/abs/10.1111/1365-2478.12940http://rid.unrn.edu.ar/handle/20.500.12049/5796https://doi.org/10.1111/1365-2478.12940eng68 (5)Geophysical Prospectinginfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/reponame:RID-UNRN (UNRN)instname:Universidad Nacional de Río Negro2025-09-29T14:29:23Zoai:rid.unrn.edu.ar:20.500.12049/5796instacron:UNRNInstitucionalhttps://rid.unrn.edu.ar/jspui/Universidad públicaNo correspondehttps://rid.unrn.edu.ar/oai/snrdrid@unrn.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:43692025-09-29 14:29:24.033RID-UNRN (UNRN) - Universidad Nacional de Río Negrofalse
dc.title.none.fl_str_mv Bayesian inversion of joint SH seismic and seismoelectric data to infer glacier system properties
title Bayesian inversion of joint SH seismic and seismoelectric data to infer glacier system properties
spellingShingle Bayesian inversion of joint SH seismic and seismoelectric data to infer glacier system properties
Macchioli Grande, Franco
Ciencias Exactas y Naturales
Electromagnetics
Inversion
Modelling
Parameter Estimation
Seismics
Ciencias Exactas y Naturales
title_short Bayesian inversion of joint SH seismic and seismoelectric data to infer glacier system properties
title_full Bayesian inversion of joint SH seismic and seismoelectric data to infer glacier system properties
title_fullStr Bayesian inversion of joint SH seismic and seismoelectric data to infer glacier system properties
title_full_unstemmed Bayesian inversion of joint SH seismic and seismoelectric data to infer glacier system properties
title_sort Bayesian inversion of joint SH seismic and seismoelectric data to infer glacier system properties
dc.creator.none.fl_str_mv Macchioli Grande, Franco
Zyserman, Fabio
Monachesi, Leonardo Bruno
Jouniaux, Laurence
Rosas Carbajal, Marina
author Macchioli Grande, Franco
author_facet Macchioli Grande, Franco
Zyserman, Fabio
Monachesi, Leonardo Bruno
Jouniaux, Laurence
Rosas Carbajal, Marina
author_role author
author2 Zyserman, Fabio
Monachesi, Leonardo Bruno
Jouniaux, Laurence
Rosas Carbajal, Marina
author2_role author
author
author
author
dc.subject.none.fl_str_mv Ciencias Exactas y Naturales
Electromagnetics
Inversion
Modelling
Parameter Estimation
Seismics
Ciencias Exactas y Naturales
topic Ciencias Exactas y Naturales
Electromagnetics
Inversion
Modelling
Parameter Estimation
Seismics
Ciencias Exactas y Naturales
dc.description.none.fl_txt_mv Fil: Macchioli Grande, Franco. CONICET, Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata; Argentina.
Fil: Zyserman, Fabio. CONICET, Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata; Argentina.
Fil: Monachesi, Leonardo. Universidad Nacional de Río Negro. Instituto de Investigación en Paleobiología y Geología. Río Negro, Argentina.
Fil: Jouniaux, Laurence. Institut de Physique du Globe de Strasbourg (UMR 7516), Université de Strasbourg et CNRS, Strasbourg; Francia.
Fil: Rosas Carbajal, Marina. Institut de Physique du Globe de Paris; Francia.
In glacial studies, properties such as glacier thickness and the basement permeability and porosity are key to understand the hydrological and mechanical behaviour of the system. The seismoelectric method could potentially be used to determine key properties of glacial environments. Here we analytically model the generation of seismic and seismoelectric signals by means of a shear horizontal seismic wave source on top of a glacier overlying a porous basement. Considering a one-dimensional setting, we compute the seismic waves and the electrokinetically induced electric field. We then analyse the sensitivity of the seismic and electromagnetic data to relevant model parameters, namely depth of the glacier bottom, porosity, permeability, shear modulus and saturating water salinity of the glacier basement. Moreover, we study the possibility of inferring these key parameters from a set of very low noise synthetic data, adopting a Bayesian framework to pay particular attention to the uncertainty of the model parameters mentioned above. We tackle the resolution of the probabilistic inverse problem with two strategies: (1) we compute the marginal posterior distributions of each model parameter solving multidimensional integrals numerically and (2) we use a Markov chain Monte Carlo algorithm to retrieve a collection of model parameters that follows the posterior probability density function of the model parameters, given the synthetic data set. Both methodologies are able to obtain the marginal distributions of the parameters and estimate their mean and standard deviation. The Markov chain Monte Carlo algorithm performs better in terms of numerical stability and number of iterations needed to characterize the distributions. The inversion of seismic data alone is not able to constrain the values of porosity and permeability further than the prior distribution. In turn, the inversion of the electric data alone, and the joint inversion of seismic and electric data are useful to constrain these parameters as well as other glacial system properties. Furthermore, the joint inversion reduces the uncertainty of the model parameters estimates and provides more accurate results.
-
description Fil: Macchioli Grande, Franco. CONICET, Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata; Argentina.
publishDate 2020
dc.date.none.fl_str_mv 2020
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv Macchioli Grande, F., Zyserman, F., Monachesi, L.B., Jouniaux, L. and Rosas Carbajal, M., (2020). Bayesian inversion of joint SH seismic and seismoelectric data to infer glacier system properties. Geophysical prospecting; European Association of Geoscientists & Engineers; 68 (5); 1633-1656
0016-8025
1365-2478
https://onlinelibrary.wiley.com/doi/abs/10.1111/1365-2478.12940
http://rid.unrn.edu.ar/handle/20.500.12049/5796
https://doi.org/10.1111/1365-2478.12940
identifier_str_mv Macchioli Grande, F., Zyserman, F., Monachesi, L.B., Jouniaux, L. and Rosas Carbajal, M., (2020). Bayesian inversion of joint SH seismic and seismoelectric data to infer glacier system properties. Geophysical prospecting; European Association of Geoscientists & Engineers; 68 (5); 1633-1656
0016-8025
1365-2478
url https://onlinelibrary.wiley.com/doi/abs/10.1111/1365-2478.12940
http://rid.unrn.edu.ar/handle/20.500.12049/5796
https://doi.org/10.1111/1365-2478.12940
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 68 (5)
Geophysical Prospecting
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv European Association of Geoscientists & Engineers
publisher.none.fl_str_mv European Association of Geoscientists & Engineers
dc.source.none.fl_str_mv reponame:RID-UNRN (UNRN)
instname:Universidad Nacional de Río Negro
reponame_str RID-UNRN (UNRN)
collection RID-UNRN (UNRN)
instname_str Universidad Nacional de Río Negro
repository.name.fl_str_mv RID-UNRN (UNRN) - Universidad Nacional de Río Negro
repository.mail.fl_str_mv rid@unrn.edu.ar
_version_ 1844621622077554688
score 12.559606