Bayesian inversion of joint SH seismic and seismoelectric data to infer glacier system properties
- Autores
- Macchioli Grande, Franco; Zyserman, Fabio; Monachesi, Leonardo Bruno; Jouniaux, Laurence; Rosas Carbajal, Marina
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Fil: Macchioli Grande, Franco. CONICET, Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata; Argentina.
Fil: Zyserman, Fabio. CONICET, Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata; Argentina.
Fil: Monachesi, Leonardo. Universidad Nacional de Río Negro. Instituto de Investigación en Paleobiología y Geología. Río Negro, Argentina.
Fil: Jouniaux, Laurence. Institut de Physique du Globe de Strasbourg (UMR 7516), Université de Strasbourg et CNRS, Strasbourg; Francia.
Fil: Rosas Carbajal, Marina. Institut de Physique du Globe de Paris; Francia.
In glacial studies, properties such as glacier thickness and the basement permeability and porosity are key to understand the hydrological and mechanical behaviour of the system. The seismoelectric method could potentially be used to determine key properties of glacial environments. Here we analytically model the generation of seismic and seismoelectric signals by means of a shear horizontal seismic wave source on top of a glacier overlying a porous basement. Considering a one-dimensional setting, we compute the seismic waves and the electrokinetically induced electric field. We then analyse the sensitivity of the seismic and electromagnetic data to relevant model parameters, namely depth of the glacier bottom, porosity, permeability, shear modulus and saturating water salinity of the glacier basement. Moreover, we study the possibility of inferring these key parameters from a set of very low noise synthetic data, adopting a Bayesian framework to pay particular attention to the uncertainty of the model parameters mentioned above. We tackle the resolution of the probabilistic inverse problem with two strategies: (1) we compute the marginal posterior distributions of each model parameter solving multidimensional integrals numerically and (2) we use a Markov chain Monte Carlo algorithm to retrieve a collection of model parameters that follows the posterior probability density function of the model parameters, given the synthetic data set. Both methodologies are able to obtain the marginal distributions of the parameters and estimate their mean and standard deviation. The Markov chain Monte Carlo algorithm performs better in terms of numerical stability and number of iterations needed to characterize the distributions. The inversion of seismic data alone is not able to constrain the values of porosity and permeability further than the prior distribution. In turn, the inversion of the electric data alone, and the joint inversion of seismic and electric data are useful to constrain these parameters as well as other glacial system properties. Furthermore, the joint inversion reduces the uncertainty of the model parameters estimates and provides more accurate results.
- - Materia
-
Ciencias Exactas y Naturales
Electromagnetics
Inversion
Modelling
Parameter Estimation
Seismics
Ciencias Exactas y Naturales - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de Río Negro
- OAI Identificador
- oai:rid.unrn.edu.ar:20.500.12049/5796
Ver los metadatos del registro completo
id |
RIDUNRN_9ea37aa428f297f6cde33b2b870ccc01 |
---|---|
oai_identifier_str |
oai:rid.unrn.edu.ar:20.500.12049/5796 |
network_acronym_str |
RIDUNRN |
repository_id_str |
4369 |
network_name_str |
RID-UNRN (UNRN) |
spelling |
Bayesian inversion of joint SH seismic and seismoelectric data to infer glacier system propertiesMacchioli Grande, FrancoZyserman, FabioMonachesi, Leonardo BrunoJouniaux, LaurenceRosas Carbajal, MarinaCiencias Exactas y NaturalesElectromagneticsInversionModellingParameter EstimationSeismicsCiencias Exactas y NaturalesFil: Macchioli Grande, Franco. CONICET, Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata; Argentina.Fil: Zyserman, Fabio. CONICET, Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata; Argentina.Fil: Monachesi, Leonardo. Universidad Nacional de Río Negro. Instituto de Investigación en Paleobiología y Geología. Río Negro, Argentina.Fil: Jouniaux, Laurence. Institut de Physique du Globe de Strasbourg (UMR 7516), Université de Strasbourg et CNRS, Strasbourg; Francia.Fil: Rosas Carbajal, Marina. Institut de Physique du Globe de Paris; Francia.In glacial studies, properties such as glacier thickness and the basement permeability and porosity are key to understand the hydrological and mechanical behaviour of the system. The seismoelectric method could potentially be used to determine key properties of glacial environments. Here we analytically model the generation of seismic and seismoelectric signals by means of a shear horizontal seismic wave source on top of a glacier overlying a porous basement. Considering a one-dimensional setting, we compute the seismic waves and the electrokinetically induced electric field. We then analyse the sensitivity of the seismic and electromagnetic data to relevant model parameters, namely depth of the glacier bottom, porosity, permeability, shear modulus and saturating water salinity of the glacier basement. Moreover, we study the possibility of inferring these key parameters from a set of very low noise synthetic data, adopting a Bayesian framework to pay particular attention to the uncertainty of the model parameters mentioned above. We tackle the resolution of the probabilistic inverse problem with two strategies: (1) we compute the marginal posterior distributions of each model parameter solving multidimensional integrals numerically and (2) we use a Markov chain Monte Carlo algorithm to retrieve a collection of model parameters that follows the posterior probability density function of the model parameters, given the synthetic data set. Both methodologies are able to obtain the marginal distributions of the parameters and estimate their mean and standard deviation. The Markov chain Monte Carlo algorithm performs better in terms of numerical stability and number of iterations needed to characterize the distributions. The inversion of seismic data alone is not able to constrain the values of porosity and permeability further than the prior distribution. In turn, the inversion of the electric data alone, and the joint inversion of seismic and electric data are useful to constrain these parameters as well as other glacial system properties. Furthermore, the joint inversion reduces the uncertainty of the model parameters estimates and provides more accurate results.-European Association of Geoscientists & Engineers2020info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfMacchioli Grande, F., Zyserman, F., Monachesi, L.B., Jouniaux, L. and Rosas Carbajal, M., (2020). Bayesian inversion of joint SH seismic and seismoelectric data to infer glacier system properties. Geophysical prospecting; European Association of Geoscientists & Engineers; 68 (5); 1633-16560016-80251365-2478https://onlinelibrary.wiley.com/doi/abs/10.1111/1365-2478.12940http://rid.unrn.edu.ar/handle/20.500.12049/5796https://doi.org/10.1111/1365-2478.12940eng68 (5)Geophysical Prospectinginfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/reponame:RID-UNRN (UNRN)instname:Universidad Nacional de Río Negro2025-09-29T14:29:23Zoai:rid.unrn.edu.ar:20.500.12049/5796instacron:UNRNInstitucionalhttps://rid.unrn.edu.ar/jspui/Universidad públicaNo correspondehttps://rid.unrn.edu.ar/oai/snrdrid@unrn.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:43692025-09-29 14:29:24.033RID-UNRN (UNRN) - Universidad Nacional de Río Negrofalse |
dc.title.none.fl_str_mv |
Bayesian inversion of joint SH seismic and seismoelectric data to infer glacier system properties |
title |
Bayesian inversion of joint SH seismic and seismoelectric data to infer glacier system properties |
spellingShingle |
Bayesian inversion of joint SH seismic and seismoelectric data to infer glacier system properties Macchioli Grande, Franco Ciencias Exactas y Naturales Electromagnetics Inversion Modelling Parameter Estimation Seismics Ciencias Exactas y Naturales |
title_short |
Bayesian inversion of joint SH seismic and seismoelectric data to infer glacier system properties |
title_full |
Bayesian inversion of joint SH seismic and seismoelectric data to infer glacier system properties |
title_fullStr |
Bayesian inversion of joint SH seismic and seismoelectric data to infer glacier system properties |
title_full_unstemmed |
Bayesian inversion of joint SH seismic and seismoelectric data to infer glacier system properties |
title_sort |
Bayesian inversion of joint SH seismic and seismoelectric data to infer glacier system properties |
dc.creator.none.fl_str_mv |
Macchioli Grande, Franco Zyserman, Fabio Monachesi, Leonardo Bruno Jouniaux, Laurence Rosas Carbajal, Marina |
author |
Macchioli Grande, Franco |
author_facet |
Macchioli Grande, Franco Zyserman, Fabio Monachesi, Leonardo Bruno Jouniaux, Laurence Rosas Carbajal, Marina |
author_role |
author |
author2 |
Zyserman, Fabio Monachesi, Leonardo Bruno Jouniaux, Laurence Rosas Carbajal, Marina |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Ciencias Exactas y Naturales Electromagnetics Inversion Modelling Parameter Estimation Seismics Ciencias Exactas y Naturales |
topic |
Ciencias Exactas y Naturales Electromagnetics Inversion Modelling Parameter Estimation Seismics Ciencias Exactas y Naturales |
dc.description.none.fl_txt_mv |
Fil: Macchioli Grande, Franco. CONICET, Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata; Argentina. Fil: Zyserman, Fabio. CONICET, Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata; Argentina. Fil: Monachesi, Leonardo. Universidad Nacional de Río Negro. Instituto de Investigación en Paleobiología y Geología. Río Negro, Argentina. Fil: Jouniaux, Laurence. Institut de Physique du Globe de Strasbourg (UMR 7516), Université de Strasbourg et CNRS, Strasbourg; Francia. Fil: Rosas Carbajal, Marina. Institut de Physique du Globe de Paris; Francia. In glacial studies, properties such as glacier thickness and the basement permeability and porosity are key to understand the hydrological and mechanical behaviour of the system. The seismoelectric method could potentially be used to determine key properties of glacial environments. Here we analytically model the generation of seismic and seismoelectric signals by means of a shear horizontal seismic wave source on top of a glacier overlying a porous basement. Considering a one-dimensional setting, we compute the seismic waves and the electrokinetically induced electric field. We then analyse the sensitivity of the seismic and electromagnetic data to relevant model parameters, namely depth of the glacier bottom, porosity, permeability, shear modulus and saturating water salinity of the glacier basement. Moreover, we study the possibility of inferring these key parameters from a set of very low noise synthetic data, adopting a Bayesian framework to pay particular attention to the uncertainty of the model parameters mentioned above. We tackle the resolution of the probabilistic inverse problem with two strategies: (1) we compute the marginal posterior distributions of each model parameter solving multidimensional integrals numerically and (2) we use a Markov chain Monte Carlo algorithm to retrieve a collection of model parameters that follows the posterior probability density function of the model parameters, given the synthetic data set. Both methodologies are able to obtain the marginal distributions of the parameters and estimate their mean and standard deviation. The Markov chain Monte Carlo algorithm performs better in terms of numerical stability and number of iterations needed to characterize the distributions. The inversion of seismic data alone is not able to constrain the values of porosity and permeability further than the prior distribution. In turn, the inversion of the electric data alone, and the joint inversion of seismic and electric data are useful to constrain these parameters as well as other glacial system properties. Furthermore, the joint inversion reduces the uncertainty of the model parameters estimates and provides more accurate results. - |
description |
Fil: Macchioli Grande, Franco. CONICET, Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata; Argentina. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
Macchioli Grande, F., Zyserman, F., Monachesi, L.B., Jouniaux, L. and Rosas Carbajal, M., (2020). Bayesian inversion of joint SH seismic and seismoelectric data to infer glacier system properties. Geophysical prospecting; European Association of Geoscientists & Engineers; 68 (5); 1633-1656 0016-8025 1365-2478 https://onlinelibrary.wiley.com/doi/abs/10.1111/1365-2478.12940 http://rid.unrn.edu.ar/handle/20.500.12049/5796 https://doi.org/10.1111/1365-2478.12940 |
identifier_str_mv |
Macchioli Grande, F., Zyserman, F., Monachesi, L.B., Jouniaux, L. and Rosas Carbajal, M., (2020). Bayesian inversion of joint SH seismic and seismoelectric data to infer glacier system properties. Geophysical prospecting; European Association of Geoscientists & Engineers; 68 (5); 1633-1656 0016-8025 1365-2478 |
url |
https://onlinelibrary.wiley.com/doi/abs/10.1111/1365-2478.12940 http://rid.unrn.edu.ar/handle/20.500.12049/5796 https://doi.org/10.1111/1365-2478.12940 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
68 (5) Geophysical Prospecting |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
European Association of Geoscientists & Engineers |
publisher.none.fl_str_mv |
European Association of Geoscientists & Engineers |
dc.source.none.fl_str_mv |
reponame:RID-UNRN (UNRN) instname:Universidad Nacional de Río Negro |
reponame_str |
RID-UNRN (UNRN) |
collection |
RID-UNRN (UNRN) |
instname_str |
Universidad Nacional de Río Negro |
repository.name.fl_str_mv |
RID-UNRN (UNRN) - Universidad Nacional de Río Negro |
repository.mail.fl_str_mv |
rid@unrn.edu.ar |
_version_ |
1844621622077554688 |
score |
12.559606 |