Relationships between PCA and PLS-regression
- Autores
- Vega, Jorge Rubén; Godoy, José Luis; Marchetti, Jacinto L.
- Año de publicación
- 2014
- Idioma
- español castellano
- Tipo de recurso
- artículo
- Estado
- versión aceptada
- Descripción
- This work aims at comparing several features of Principal Component Analysis (PCA) and Partial Least Squares Regression (PLSR), as techniques typically utilized for modeling, output prediction, and monitoring of multivariate processes. First, geometric properties of the decomposition induced by PLSR are described in relation to the PCA of the separated input and output data (X-PCA and Y-PCA, respectively). Then, analogies between the models derived with PLSR and YX-PCA (i.e., PCA of the joint input–output variables) are presented; and regarding to process monitoring applications, the specific PLSR and YX-PCA fault detection indices are compared. Numerical examples are used to illustrate the relationships between latent models, output predictive models, and fault detection indices. The three alternative approaches (PLSR, YX-PCA and Y-PCA plus X-PCA) are compared with regard to their use for statistical modeling. In particular, a case study is simulated and the results are used for enhancing the comprehension of the PLSR properties and for evaluating the discriminatory capacity of the fault detection indices based on the PLSR and YX-PCA modeling alternatives. Some recommendations are given in order to choose the more appropriate approach for a specific application: 1) PLSR and YX-PCA have similar capacity for fault detection, but PLSR is recommended for process monitoring because it presents a better diagnosing capability; 2) PLSR is more reliable for output prediction purposes (e.g., for soft sensor development); and 3) YX-PCA is recommended for the analysis of latent patterns imbedded in datasets.
Fil: Vega, Jorge Rubén. CONICET-Universidad Nacional del Litoral. INTEC; Argentina.
Fil: Godoy, José Luis. CONICET-Universidad Nacional del Litoral. INTEC; Argentina.
Fil: Marchetti, Jacinto L. Universidad Tecnológica Nacional. Facultad Regional Santa Fe; Argentina.
Fil: Vega, Jorge Rubén. Universidad Tecnológica Nacional. Facultad Regional Santa Fe; Argentina.
Fil: Godoy, José Luis. Universidad Tecnológica Nacional. Facultad Regional Paraná; Argentina.
Peer Reviewed - Materia
-
Chemometrics
Intelligent Laboratory Systems - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Tecnológica Nacional
- OAI Identificador
- oai:ria.utn.edu.ar:20.500.12272/3107
Ver los metadatos del registro completo
id |
RIAUTN_c1fe7c98c007b29d1d5527c546d6f088 |
---|---|
oai_identifier_str |
oai:ria.utn.edu.ar:20.500.12272/3107 |
network_acronym_str |
RIAUTN |
repository_id_str |
a |
network_name_str |
Repositorio Institucional Abierto (UTN) |
spelling |
Relationships between PCA and PLS-regressionVega, Jorge RubénGodoy, José LuisMarchetti, Jacinto L.ChemometricsIntelligent Laboratory SystemsThis work aims at comparing several features of Principal Component Analysis (PCA) and Partial Least Squares Regression (PLSR), as techniques typically utilized for modeling, output prediction, and monitoring of multivariate processes. First, geometric properties of the decomposition induced by PLSR are described in relation to the PCA of the separated input and output data (X-PCA and Y-PCA, respectively). Then, analogies between the models derived with PLSR and YX-PCA (i.e., PCA of the joint input–output variables) are presented; and regarding to process monitoring applications, the specific PLSR and YX-PCA fault detection indices are compared. Numerical examples are used to illustrate the relationships between latent models, output predictive models, and fault detection indices. The three alternative approaches (PLSR, YX-PCA and Y-PCA plus X-PCA) are compared with regard to their use for statistical modeling. In particular, a case study is simulated and the results are used for enhancing the comprehension of the PLSR properties and for evaluating the discriminatory capacity of the fault detection indices based on the PLSR and YX-PCA modeling alternatives. Some recommendations are given in order to choose the more appropriate approach for a specific application: 1) PLSR and YX-PCA have similar capacity for fault detection, but PLSR is recommended for process monitoring because it presents a better diagnosing capability; 2) PLSR is more reliable for output prediction purposes (e.g., for soft sensor development); and 3) YX-PCA is recommended for the analysis of latent patterns imbedded in datasets.Fil: Vega, Jorge Rubén. CONICET-Universidad Nacional del Litoral. INTEC; Argentina.Fil: Godoy, José Luis. CONICET-Universidad Nacional del Litoral. INTEC; Argentina.Fil: Marchetti, Jacinto L. Universidad Tecnológica Nacional. Facultad Regional Santa Fe; Argentina.Fil: Vega, Jorge Rubén. Universidad Tecnológica Nacional. Facultad Regional Santa Fe; Argentina.Fil: Godoy, José Luis. Universidad Tecnológica Nacional. Facultad Regional Paraná; Argentina.Peer ReviewedRevista Chem And Intell Lab Syst2018-09-11T19:49:37Z2018-09-11T19:49:37Z2014info:eu-repo/semantics/articleinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfChemometrics and Intelligent Laboratory Systems, v.130, pp. 182-191 (2014)http://hdl.handle.net/20.500.12272/3107spainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Condiciones de Uso desde su aprobación / presentaciónAtribución-NoComercial-CompartirIgual 4.0 Internacionalreponame:Repositorio Institucional Abierto (UTN)instname:Universidad Tecnológica Nacional2025-09-04T11:14:41Zoai:ria.utn.edu.ar:20.500.12272/3107instacron:UTNInstitucionalhttp://ria.utn.edu.ar/Universidad públicaNo correspondehttp://ria.utn.edu.ar/oaigestionria@rec.utn.edu.ar; fsuarez@rec.utn.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:a2025-09-04 11:14:41.733Repositorio Institucional Abierto (UTN) - Universidad Tecnológica Nacionalfalse |
dc.title.none.fl_str_mv |
Relationships between PCA and PLS-regression |
title |
Relationships between PCA and PLS-regression |
spellingShingle |
Relationships between PCA and PLS-regression Vega, Jorge Rubén Chemometrics Intelligent Laboratory Systems |
title_short |
Relationships between PCA and PLS-regression |
title_full |
Relationships between PCA and PLS-regression |
title_fullStr |
Relationships between PCA and PLS-regression |
title_full_unstemmed |
Relationships between PCA and PLS-regression |
title_sort |
Relationships between PCA and PLS-regression |
dc.creator.none.fl_str_mv |
Vega, Jorge Rubén Godoy, José Luis Marchetti, Jacinto L. |
author |
Vega, Jorge Rubén |
author_facet |
Vega, Jorge Rubén Godoy, José Luis Marchetti, Jacinto L. |
author_role |
author |
author2 |
Godoy, José Luis Marchetti, Jacinto L. |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Chemometrics Intelligent Laboratory Systems |
topic |
Chemometrics Intelligent Laboratory Systems |
dc.description.none.fl_txt_mv |
This work aims at comparing several features of Principal Component Analysis (PCA) and Partial Least Squares Regression (PLSR), as techniques typically utilized for modeling, output prediction, and monitoring of multivariate processes. First, geometric properties of the decomposition induced by PLSR are described in relation to the PCA of the separated input and output data (X-PCA and Y-PCA, respectively). Then, analogies between the models derived with PLSR and YX-PCA (i.e., PCA of the joint input–output variables) are presented; and regarding to process monitoring applications, the specific PLSR and YX-PCA fault detection indices are compared. Numerical examples are used to illustrate the relationships between latent models, output predictive models, and fault detection indices. The three alternative approaches (PLSR, YX-PCA and Y-PCA plus X-PCA) are compared with regard to their use for statistical modeling. In particular, a case study is simulated and the results are used for enhancing the comprehension of the PLSR properties and for evaluating the discriminatory capacity of the fault detection indices based on the PLSR and YX-PCA modeling alternatives. Some recommendations are given in order to choose the more appropriate approach for a specific application: 1) PLSR and YX-PCA have similar capacity for fault detection, but PLSR is recommended for process monitoring because it presents a better diagnosing capability; 2) PLSR is more reliable for output prediction purposes (e.g., for soft sensor development); and 3) YX-PCA is recommended for the analysis of latent patterns imbedded in datasets. Fil: Vega, Jorge Rubén. CONICET-Universidad Nacional del Litoral. INTEC; Argentina. Fil: Godoy, José Luis. CONICET-Universidad Nacional del Litoral. INTEC; Argentina. Fil: Marchetti, Jacinto L. Universidad Tecnológica Nacional. Facultad Regional Santa Fe; Argentina. Fil: Vega, Jorge Rubén. Universidad Tecnológica Nacional. Facultad Regional Santa Fe; Argentina. Fil: Godoy, José Luis. Universidad Tecnológica Nacional. Facultad Regional Paraná; Argentina. Peer Reviewed |
description |
This work aims at comparing several features of Principal Component Analysis (PCA) and Partial Least Squares Regression (PLSR), as techniques typically utilized for modeling, output prediction, and monitoring of multivariate processes. First, geometric properties of the decomposition induced by PLSR are described in relation to the PCA of the separated input and output data (X-PCA and Y-PCA, respectively). Then, analogies between the models derived with PLSR and YX-PCA (i.e., PCA of the joint input–output variables) are presented; and regarding to process monitoring applications, the specific PLSR and YX-PCA fault detection indices are compared. Numerical examples are used to illustrate the relationships between latent models, output predictive models, and fault detection indices. The three alternative approaches (PLSR, YX-PCA and Y-PCA plus X-PCA) are compared with regard to their use for statistical modeling. In particular, a case study is simulated and the results are used for enhancing the comprehension of the PLSR properties and for evaluating the discriminatory capacity of the fault detection indices based on the PLSR and YX-PCA modeling alternatives. Some recommendations are given in order to choose the more appropriate approach for a specific application: 1) PLSR and YX-PCA have similar capacity for fault detection, but PLSR is recommended for process monitoring because it presents a better diagnosing capability; 2) PLSR is more reliable for output prediction purposes (e.g., for soft sensor development); and 3) YX-PCA is recommended for the analysis of latent patterns imbedded in datasets. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014 2018-09-11T19:49:37Z 2018-09-11T19:49:37Z |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/acceptedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
acceptedVersion |
dc.identifier.none.fl_str_mv |
Chemometrics and Intelligent Laboratory Systems, v.130, pp. 182-191 (2014) http://hdl.handle.net/20.500.12272/3107 |
identifier_str_mv |
Chemometrics and Intelligent Laboratory Systems, v.130, pp. 182-191 (2014) |
url |
http://hdl.handle.net/20.500.12272/3107 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Condiciones de Uso desde su aprobación / presentación Atribución-NoComercial-CompartirIgual 4.0 Internacional |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Condiciones de Uso desde su aprobación / presentación Atribución-NoComercial-CompartirIgual 4.0 Internacional |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Revista Chem And Intell Lab Syst |
publisher.none.fl_str_mv |
Revista Chem And Intell Lab Syst |
dc.source.none.fl_str_mv |
reponame:Repositorio Institucional Abierto (UTN) instname:Universidad Tecnológica Nacional |
reponame_str |
Repositorio Institucional Abierto (UTN) |
collection |
Repositorio Institucional Abierto (UTN) |
instname_str |
Universidad Tecnológica Nacional |
repository.name.fl_str_mv |
Repositorio Institucional Abierto (UTN) - Universidad Tecnológica Nacional |
repository.mail.fl_str_mv |
gestionria@rec.utn.edu.ar; fsuarez@rec.utn.edu.ar |
_version_ |
1842344357328322560 |
score |
12.623145 |