Relationships between PCA and PLS-regression

Autores
Vega, Jorge Rubén; Godoy, José Luis; Marchetti, Jacinto L.
Año de publicación
2014
Idioma
español castellano
Tipo de recurso
artículo
Estado
versión aceptada
Descripción
This work aims at comparing several features of Principal Component Analysis (PCA) and Partial Least Squares Regression (PLSR), as techniques typically utilized for modeling, output prediction, and monitoring of multivariate processes. First, geometric properties of the decomposition induced by PLSR are described in relation to the PCA of the separated input and output data (X-PCA and Y-PCA, respectively). Then, analogies between the models derived with PLSR and YX-PCA (i.e., PCA of the joint input–output variables) are presented; and regarding to process monitoring applications, the specific PLSR and YX-PCA fault detection indices are compared. Numerical examples are used to illustrate the relationships between latent models, output predictive models, and fault detection indices. The three alternative approaches (PLSR, YX-PCA and Y-PCA plus X-PCA) are compared with regard to their use for statistical modeling. In particular, a case study is simulated and the results are used for enhancing the comprehension of the PLSR properties and for evaluating the discriminatory capacity of the fault detection indices based on the PLSR and YX-PCA modeling alternatives. Some recommendations are given in order to choose the more appropriate approach for a specific application: 1) PLSR and YX-PCA have similar capacity for fault detection, but PLSR is recommended for process monitoring because it presents a better diagnosing capability; 2) PLSR is more reliable for output prediction purposes (e.g., for soft sensor development); and 3) YX-PCA is recommended for the analysis of latent patterns imbedded in datasets.
Fil: Vega, Jorge Rubén. CONICET-Universidad Nacional del Litoral. INTEC; Argentina.
Fil: Godoy, José Luis. CONICET-Universidad Nacional del Litoral. INTEC; Argentina.
Fil: Marchetti, Jacinto L. Universidad Tecnológica Nacional. Facultad Regional Santa Fe; Argentina.
Fil: Vega, Jorge Rubén. Universidad Tecnológica Nacional. Facultad Regional Santa Fe; Argentina.
Fil: Godoy, José Luis. Universidad Tecnológica Nacional. Facultad Regional Paraná; Argentina.
Peer Reviewed
Materia
Chemometrics
Intelligent Laboratory Systems
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
Repositorio Institucional Abierto (UTN)
Institución
Universidad Tecnológica Nacional
OAI Identificador
oai:ria.utn.edu.ar:20.500.12272/3107

id RIAUTN_c1fe7c98c007b29d1d5527c546d6f088
oai_identifier_str oai:ria.utn.edu.ar:20.500.12272/3107
network_acronym_str RIAUTN
repository_id_str a
network_name_str Repositorio Institucional Abierto (UTN)
spelling Relationships between PCA and PLS-regressionVega, Jorge RubénGodoy, José LuisMarchetti, Jacinto L.ChemometricsIntelligent Laboratory SystemsThis work aims at comparing several features of Principal Component Analysis (PCA) and Partial Least Squares Regression (PLSR), as techniques typically utilized for modeling, output prediction, and monitoring of multivariate processes. First, geometric properties of the decomposition induced by PLSR are described in relation to the PCA of the separated input and output data (X-PCA and Y-PCA, respectively). Then, analogies between the models derived with PLSR and YX-PCA (i.e., PCA of the joint input–output variables) are presented; and regarding to process monitoring applications, the specific PLSR and YX-PCA fault detection indices are compared. Numerical examples are used to illustrate the relationships between latent models, output predictive models, and fault detection indices. The three alternative approaches (PLSR, YX-PCA and Y-PCA plus X-PCA) are compared with regard to their use for statistical modeling. In particular, a case study is simulated and the results are used for enhancing the comprehension of the PLSR properties and for evaluating the discriminatory capacity of the fault detection indices based on the PLSR and YX-PCA modeling alternatives. Some recommendations are given in order to choose the more appropriate approach for a specific application: 1) PLSR and YX-PCA have similar capacity for fault detection, but PLSR is recommended for process monitoring because it presents a better diagnosing capability; 2) PLSR is more reliable for output prediction purposes (e.g., for soft sensor development); and 3) YX-PCA is recommended for the analysis of latent patterns imbedded in datasets.Fil: Vega, Jorge Rubén. CONICET-Universidad Nacional del Litoral. INTEC; Argentina.Fil: Godoy, José Luis. CONICET-Universidad Nacional del Litoral. INTEC; Argentina.Fil: Marchetti, Jacinto L. Universidad Tecnológica Nacional. Facultad Regional Santa Fe; Argentina.Fil: Vega, Jorge Rubén. Universidad Tecnológica Nacional. Facultad Regional Santa Fe; Argentina.Fil: Godoy, José Luis. Universidad Tecnológica Nacional. Facultad Regional Paraná; Argentina.Peer ReviewedRevista Chem And Intell Lab Syst2018-09-11T19:49:37Z2018-09-11T19:49:37Z2014info:eu-repo/semantics/articleinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfChemometrics and Intelligent Laboratory Systems, v.130, pp. 182-191 (2014)http://hdl.handle.net/20.500.12272/3107spainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Condiciones de Uso desde su aprobación / presentaciónAtribución-NoComercial-CompartirIgual 4.0 Internacionalreponame:Repositorio Institucional Abierto (UTN)instname:Universidad Tecnológica Nacional2025-09-04T11:14:41Zoai:ria.utn.edu.ar:20.500.12272/3107instacron:UTNInstitucionalhttp://ria.utn.edu.ar/Universidad públicaNo correspondehttp://ria.utn.edu.ar/oaigestionria@rec.utn.edu.ar; fsuarez@rec.utn.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:a2025-09-04 11:14:41.733Repositorio Institucional Abierto (UTN) - Universidad Tecnológica Nacionalfalse
dc.title.none.fl_str_mv Relationships between PCA and PLS-regression
title Relationships between PCA and PLS-regression
spellingShingle Relationships between PCA and PLS-regression
Vega, Jorge Rubén
Chemometrics
Intelligent Laboratory Systems
title_short Relationships between PCA and PLS-regression
title_full Relationships between PCA and PLS-regression
title_fullStr Relationships between PCA and PLS-regression
title_full_unstemmed Relationships between PCA and PLS-regression
title_sort Relationships between PCA and PLS-regression
dc.creator.none.fl_str_mv Vega, Jorge Rubén
Godoy, José Luis
Marchetti, Jacinto L.
author Vega, Jorge Rubén
author_facet Vega, Jorge Rubén
Godoy, José Luis
Marchetti, Jacinto L.
author_role author
author2 Godoy, José Luis
Marchetti, Jacinto L.
author2_role author
author
dc.subject.none.fl_str_mv Chemometrics
Intelligent Laboratory Systems
topic Chemometrics
Intelligent Laboratory Systems
dc.description.none.fl_txt_mv This work aims at comparing several features of Principal Component Analysis (PCA) and Partial Least Squares Regression (PLSR), as techniques typically utilized for modeling, output prediction, and monitoring of multivariate processes. First, geometric properties of the decomposition induced by PLSR are described in relation to the PCA of the separated input and output data (X-PCA and Y-PCA, respectively). Then, analogies between the models derived with PLSR and YX-PCA (i.e., PCA of the joint input–output variables) are presented; and regarding to process monitoring applications, the specific PLSR and YX-PCA fault detection indices are compared. Numerical examples are used to illustrate the relationships between latent models, output predictive models, and fault detection indices. The three alternative approaches (PLSR, YX-PCA and Y-PCA plus X-PCA) are compared with regard to their use for statistical modeling. In particular, a case study is simulated and the results are used for enhancing the comprehension of the PLSR properties and for evaluating the discriminatory capacity of the fault detection indices based on the PLSR and YX-PCA modeling alternatives. Some recommendations are given in order to choose the more appropriate approach for a specific application: 1) PLSR and YX-PCA have similar capacity for fault detection, but PLSR is recommended for process monitoring because it presents a better diagnosing capability; 2) PLSR is more reliable for output prediction purposes (e.g., for soft sensor development); and 3) YX-PCA is recommended for the analysis of latent patterns imbedded in datasets.
Fil: Vega, Jorge Rubén. CONICET-Universidad Nacional del Litoral. INTEC; Argentina.
Fil: Godoy, José Luis. CONICET-Universidad Nacional del Litoral. INTEC; Argentina.
Fil: Marchetti, Jacinto L. Universidad Tecnológica Nacional. Facultad Regional Santa Fe; Argentina.
Fil: Vega, Jorge Rubén. Universidad Tecnológica Nacional. Facultad Regional Santa Fe; Argentina.
Fil: Godoy, José Luis. Universidad Tecnológica Nacional. Facultad Regional Paraná; Argentina.
Peer Reviewed
description This work aims at comparing several features of Principal Component Analysis (PCA) and Partial Least Squares Regression (PLSR), as techniques typically utilized for modeling, output prediction, and monitoring of multivariate processes. First, geometric properties of the decomposition induced by PLSR are described in relation to the PCA of the separated input and output data (X-PCA and Y-PCA, respectively). Then, analogies between the models derived with PLSR and YX-PCA (i.e., PCA of the joint input–output variables) are presented; and regarding to process monitoring applications, the specific PLSR and YX-PCA fault detection indices are compared. Numerical examples are used to illustrate the relationships between latent models, output predictive models, and fault detection indices. The three alternative approaches (PLSR, YX-PCA and Y-PCA plus X-PCA) are compared with regard to their use for statistical modeling. In particular, a case study is simulated and the results are used for enhancing the comprehension of the PLSR properties and for evaluating the discriminatory capacity of the fault detection indices based on the PLSR and YX-PCA modeling alternatives. Some recommendations are given in order to choose the more appropriate approach for a specific application: 1) PLSR and YX-PCA have similar capacity for fault detection, but PLSR is recommended for process monitoring because it presents a better diagnosing capability; 2) PLSR is more reliable for output prediction purposes (e.g., for soft sensor development); and 3) YX-PCA is recommended for the analysis of latent patterns imbedded in datasets.
publishDate 2014
dc.date.none.fl_str_mv 2014
2018-09-11T19:49:37Z
2018-09-11T19:49:37Z
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/acceptedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str acceptedVersion
dc.identifier.none.fl_str_mv Chemometrics and Intelligent Laboratory Systems, v.130, pp. 182-191 (2014)
http://hdl.handle.net/20.500.12272/3107
identifier_str_mv Chemometrics and Intelligent Laboratory Systems, v.130, pp. 182-191 (2014)
url http://hdl.handle.net/20.500.12272/3107
dc.language.none.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Condiciones de Uso desde su aprobación / presentación
Atribución-NoComercial-CompartirIgual 4.0 Internacional
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Condiciones de Uso desde su aprobación / presentación
Atribución-NoComercial-CompartirIgual 4.0 Internacional
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Revista Chem And Intell Lab Syst
publisher.none.fl_str_mv Revista Chem And Intell Lab Syst
dc.source.none.fl_str_mv reponame:Repositorio Institucional Abierto (UTN)
instname:Universidad Tecnológica Nacional
reponame_str Repositorio Institucional Abierto (UTN)
collection Repositorio Institucional Abierto (UTN)
instname_str Universidad Tecnológica Nacional
repository.name.fl_str_mv Repositorio Institucional Abierto (UTN) - Universidad Tecnológica Nacional
repository.mail.fl_str_mv gestionria@rec.utn.edu.ar; fsuarez@rec.utn.edu.ar
_version_ 1842344357328322560
score 12.623145