Evaluation of mammogram co-registration using mutual information
- Autores
- Foglino, Emiliano; Nores, María Laura; Rulloni, Valeria
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Fil: Foglino, Emiliano. Hospital Córdoba; Argentina.
Fil: Nores, María Laura. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación. CIEM; Argentina.
Fil: Rulloni, Valeria. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina.
Digital image processing is an area of growing interest. In this context, special importance has the co-registration of two images of the same place but recorded at different times. This is very useful in medicine; for example, radiologists routinely use several mammographic views along with previous mammograms for detecting and monitoring breast lesions. For a good comparison, images must coincide in space and conditions. In this work, it was addressed the problem of mammogram co-registration. Once the region of interest is automatically detected, the nipple locations are identified and matched. Then, the rotation and scale that maximize the Mutual Information between both images are selected. This is made in two stages: first, the maximum is searched through all values for rotation and scale in a grid. Then, the search is restricted to the region limited by the points in the grid nearest to the initial estimate. This method was applied to simulated and real data, showing a good performance. Once the correspondence between current and previous mammograms is established, the difference image could be calculated and an interval change analysis could be performed. Thus, this work contributes to increase and interpret the information that can be extracted from medical images.
https://drive.google.com/file/d/0B8bkSevnWT2MU1pONG85dnpoZVYyZ183dWJVWUlRVjhsbEhV/view
Fil: Foglino, Emiliano. Hospital Córdoba; Argentina.
Fil: Nores, María Laura. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación. CIEM; Argentina.
Fil: Rulloni, Valeria. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina.
Matemática Aplicada - Materia
-
Biomedical image processing
Breast screening
Entropy
Image registration
Mammography - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- Repositorio
- Institución
- Universidad Nacional de Córdoba
- OAI Identificador
- oai:rdu.unc.edu.ar:11086/556793
Ver los metadatos del registro completo
id |
RDUUNC_d3ee284c82a795be1d93b1a338273fb5 |
---|---|
oai_identifier_str |
oai:rdu.unc.edu.ar:11086/556793 |
network_acronym_str |
RDUUNC |
repository_id_str |
2572 |
network_name_str |
Repositorio Digital Universitario (UNC) |
spelling |
Evaluation of mammogram co-registration using mutual informationFoglino, EmilianoNores, María LauraRulloni, ValeriaBiomedical image processingBreast screeningEntropyImage registrationMammographyFil: Foglino, Emiliano. Hospital Córdoba; Argentina.Fil: Nores, María Laura. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación. CIEM; Argentina.Fil: Rulloni, Valeria. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina.Digital image processing is an area of growing interest. In this context, special importance has the co-registration of two images of the same place but recorded at different times. This is very useful in medicine; for example, radiologists routinely use several mammographic views along with previous mammograms for detecting and monitoring breast lesions. For a good comparison, images must coincide in space and conditions. In this work, it was addressed the problem of mammogram co-registration. Once the region of interest is automatically detected, the nipple locations are identified and matched. Then, the rotation and scale that maximize the Mutual Information between both images are selected. This is made in two stages: first, the maximum is searched through all values for rotation and scale in a grid. Then, the search is restricted to the region limited by the points in the grid nearest to the initial estimate. This method was applied to simulated and real data, showing a good performance. Once the correspondence between current and previous mammograms is established, the difference image could be calculated and an interval change analysis could be performed. Thus, this work contributes to increase and interpret the information that can be extracted from medical images.https://drive.google.com/file/d/0B8bkSevnWT2MU1pONG85dnpoZVYyZ183dWJVWUlRVjhsbEhV/viewFil: Foglino, Emiliano. Hospital Córdoba; Argentina.Fil: Nores, María Laura. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación. CIEM; Argentina.Fil: Rulloni, Valeria. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina.Matemática Aplicada2017info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf978-987-572-272-9http://hdl.handle.net/11086/556793enginfo:eu-repo/semantics/openAccessreponame:Repositorio Digital Universitario (UNC)instname:Universidad Nacional de Córdobainstacron:UNC2025-09-29T13:42:53Zoai:rdu.unc.edu.ar:11086/556793Institucionalhttps://rdu.unc.edu.ar/Universidad públicaNo correspondehttp://rdu.unc.edu.ar/oai/snrdoca.unc@gmail.comArgentinaNo correspondeNo correspondeNo correspondeopendoar:25722025-09-29 13:42:54.127Repositorio Digital Universitario (UNC) - Universidad Nacional de Córdobafalse |
dc.title.none.fl_str_mv |
Evaluation of mammogram co-registration using mutual information |
title |
Evaluation of mammogram co-registration using mutual information |
spellingShingle |
Evaluation of mammogram co-registration using mutual information Foglino, Emiliano Biomedical image processing Breast screening Entropy Image registration Mammography |
title_short |
Evaluation of mammogram co-registration using mutual information |
title_full |
Evaluation of mammogram co-registration using mutual information |
title_fullStr |
Evaluation of mammogram co-registration using mutual information |
title_full_unstemmed |
Evaluation of mammogram co-registration using mutual information |
title_sort |
Evaluation of mammogram co-registration using mutual information |
dc.creator.none.fl_str_mv |
Foglino, Emiliano Nores, María Laura Rulloni, Valeria |
author |
Foglino, Emiliano |
author_facet |
Foglino, Emiliano Nores, María Laura Rulloni, Valeria |
author_role |
author |
author2 |
Nores, María Laura Rulloni, Valeria |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Biomedical image processing Breast screening Entropy Image registration Mammography |
topic |
Biomedical image processing Breast screening Entropy Image registration Mammography |
dc.description.none.fl_txt_mv |
Fil: Foglino, Emiliano. Hospital Córdoba; Argentina. Fil: Nores, María Laura. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación. CIEM; Argentina. Fil: Rulloni, Valeria. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina. Digital image processing is an area of growing interest. In this context, special importance has the co-registration of two images of the same place but recorded at different times. This is very useful in medicine; for example, radiologists routinely use several mammographic views along with previous mammograms for detecting and monitoring breast lesions. For a good comparison, images must coincide in space and conditions. In this work, it was addressed the problem of mammogram co-registration. Once the region of interest is automatically detected, the nipple locations are identified and matched. Then, the rotation and scale that maximize the Mutual Information between both images are selected. This is made in two stages: first, the maximum is searched through all values for rotation and scale in a grid. Then, the search is restricted to the region limited by the points in the grid nearest to the initial estimate. This method was applied to simulated and real data, showing a good performance. Once the correspondence between current and previous mammograms is established, the difference image could be calculated and an interval change analysis could be performed. Thus, this work contributes to increase and interpret the information that can be extracted from medical images. https://drive.google.com/file/d/0B8bkSevnWT2MU1pONG85dnpoZVYyZ183dWJVWUlRVjhsbEhV/view Fil: Foglino, Emiliano. Hospital Córdoba; Argentina. Fil: Nores, María Laura. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación. CIEM; Argentina. Fil: Rulloni, Valeria. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina. Matemática Aplicada |
description |
Fil: Foglino, Emiliano. Hospital Córdoba; Argentina. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
978-987-572-272-9 http://hdl.handle.net/11086/556793 |
identifier_str_mv |
978-987-572-272-9 |
url |
http://hdl.handle.net/11086/556793 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositorio Digital Universitario (UNC) instname:Universidad Nacional de Córdoba instacron:UNC |
reponame_str |
Repositorio Digital Universitario (UNC) |
collection |
Repositorio Digital Universitario (UNC) |
instname_str |
Universidad Nacional de Córdoba |
instacron_str |
UNC |
institution |
UNC |
repository.name.fl_str_mv |
Repositorio Digital Universitario (UNC) - Universidad Nacional de Córdoba |
repository.mail.fl_str_mv |
oca.unc@gmail.com |
_version_ |
1844618939745697792 |
score |
13.070432 |