Machine learning models predict the emergence of depression in Argentinean college students during periods of COVID-19 quarantine
- Autores
- López Steinmetz, Lorena Cecilia; Sison, Margarita; Zhumagambetov, Rustam; Godoy, Juan Carlos; Haufe, Stefan
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Fil: López Steinmetz, Lorena Cecilia. Universidad Nacional de Córdoba. Facultad de Psicología; Argentina.
Fil: López Steinmetz, Lorena Cecilia. Consejo Nacional de Investigaciones Científicas y Tecnológicas. Instituto de Investigaciones Psicológicas; Argentina.
Fil: López Steinmetz, Lorena Cecilia. Technische Universität Berlin. Faculty IV Electrical Engineering and Computer Science. Chair of Uncertainty. Institute of Software Engineering and Theoretical Computer Science. Inverse Modeling and Machine Learning; Germany.
Fil: Sison, Margarita. Charité – Universitätsmedizin Berlin. Berlin Center for Advanced Neuroimaging; Germany.
Fil: Zhumagambetov, Rustam. Working Group 8.44 Machine Learning and Uncertainty. Mathematical Modelling and Data Analysis Department. Physikalisch-Technische Bundesanstalt Braunschweig und Berlin; Germany.
Fil: Godoy, Juan Carlos. Universidad Nacional de Córdoba. Facultad de Psicología; Argentina.
Fil: Godoy, Juan Carlos. Consejo Nacional de Investigaciones Científicas y Tecnológicas. Instituto de Investigaciones Psicológicas; Argentina.
Fil: Haufe, Stefan. Technische Universität Berlin. Faculty IV Electrical Engineering and Computer Science. Chair of Uncertainty. Institute of Software Engineering and Theoretical Computer Science. Inverse Modeling and Machine Learning; Germany.
Fil: Haufe, Stefan. Berlin Center for Advanced Neuroimaging (BCAN), Charité – Universitätsmedizin Berlin; Germany.
Fil: Haufe, Stefan. Working Group 8.44 Machine Learning and Uncertainty. Mathematical Modelling and Data Analysis Department. Physikalisch-Technische Bundesanstalt Braunschweig und Berlin; Germany.
Fil: Haufe, Stefan. Institute for Medical Informatics, Charité – Universitätsmedizin Berlin; Germany.
Introduction: The COVID-19 pandemic has exacerbated mental health challenges, particularly depression among college students. Detecting at-risk students early is crucial but remains challenging, particularly in developing countries. Utilizing data-driven predictive models presents a viable solution to address this pressing need. Aims: 1) To develop and compare machine learning (ML) models for predicting depression in Argentinean students during the pandemic. 2) To assess the performance of classification and regression models using appropriate metrics. 3) To identify key features driving depression prediction. Methods: A longitudinal dataset (N = 1492 college students) captured T1 and T2 measurements during the Argentinean COVID-19 quarantine. ML models, including linear logistic regression classifiers/ridge regression (LogReg/RR), random forest classifiers/regressors, and support vector machines/regressors (SVM/SVR), are employed. Assessed features encompass depression and anxiety scores (at T1), mental disorder/suicidal behavior history, quarantine sub-period information, sex, and age. For classification, models’ performance on test data is evaluated using Area Under the Precision-Recall Curve (AUPRC), Area Under the Receiver Operating Characteristic curve, Balanced Accuracy, F1 score, and Brier loss. For regression, R-squared (R2), Mean Absolute Error, and Mean Squared Error are assessed. Univariate analyses are conducted to assess the predictive strength of each individual feature with respect to the target variable. The performance of multi- vs univariate models is compared using the mean AUPRC score for classifiers and the R2 score for regressors. Results: The highest performance is achieved by SVM and LogReg (e.g., AUPRC: 0.76, 95% CI: 0.69, 0.81) and SVR and RR models (e.g., R2 for SVR and RR: 0.56, 95% CI: 0.45, 0.64 and 0.45, 0.63, respectively). Univariate models, particularly LogReg and SVM using depression (AUPRC: 0.72, 95% CI: 0.64, 0.79) or anxiety scores (AUPRC: 0.71, 95% CI: 0.64, 0.78) and RR using depression scores (R2: 0.48, 95% CI: 0.39, 0.57) exhibit performance levels close to those of the multivariate models, which include all features. Discussion: These findings highlight the relevance of pre-existing depression and anxiety conditions in predicting depression during quarantine, underscoring their comorbidity. ML models, particularly SVM/SVR and LogReg/RR, demonstrate potential in the timely detection of at-risk students. However, further studies are needed before clinical implementation.
info:eu-repo/semantics/publishedVersion
Fil: López Steinmetz, Lorena Cecilia. Universidad Nacional de Córdoba. Facultad de Psicología; Argentina.
Fil: López Steinmetz, Lorena Cecilia. Consejo Nacional de Investigaciones Científicas y Tecnológicas. Instituto de Investigaciones Psicológicas; Argentina.
Fil: López Steinmetz, Lorena Cecilia. Technische Universität Berlin. Faculty IV Electrical Engineering and Computer Science. Chair of Uncertainty. Institute of Software Engineering and Theoretical Computer Science. Inverse Modeling and Machine Learning; Germany.
Fil: Sison, Margarita. Charité – Universitätsmedizin Berlin. Berlin Center for Advanced Neuroimaging; Germany.
Fil: Zhumagambetov, Rustam. Working Group 8.44 Machine Learning and Uncertainty. Mathematical Modelling and Data Analysis Department. Physikalisch-Technische Bundesanstalt Braunschweig und Berlin; Germany.
Fil: Godoy, Juan Carlos. Universidad Nacional de Córdoba. Facultad de Psicología; Argentina.
Fil: Godoy, Juan Carlos. Consejo Nacional de Investigaciones Científicas y Tecnológicas. Instituto de Investigaciones Psicológicas; Argentina.
Fil: Haufe, Stefan. Technische Universität Berlin. Faculty IV Electrical Engineering and Computer Science. Chair of Uncertainty. Institute of Software Engineering and Theoretical Computer Science. Inverse Modeling and Machine Learning; Germany.
Fil: Haufe, Stefan. Berlin Center for Advanced Neuroimaging (BCAN), Charité – Universitätsmedizin Berlin; Germany.
Fil: Haufe, Stefan. Working Group 8.44 Machine Learning and Uncertainty. Mathematical Modelling and Data Analysis Department. Physikalisch-Technische Bundesanstalt Braunschweig und Berlin; Germany.
Fil: Haufe, Stefan. Institute for Medical Informatics, Charité – Universitätsmedizin Berlin; Germany. - Materia
-
Depression prediction
COVID-19 pandemic
Machine learning
Classification
Regression
College students
Longitudinal survey
Argentina - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- Repositorio
- Institución
- Universidad Nacional de Córdoba
- OAI Identificador
- oai:rdu.unc.edu.ar:11086/553286
Ver los metadatos del registro completo
id |
RDUUNC_b6ce2b1ba1917123df433da2ba6397a2 |
---|---|
oai_identifier_str |
oai:rdu.unc.edu.ar:11086/553286 |
network_acronym_str |
RDUUNC |
repository_id_str |
2572 |
network_name_str |
Repositorio Digital Universitario (UNC) |
spelling |
Machine learning models predict the emergence of depression in Argentinean college students during periods of COVID-19 quarantineLópez Steinmetz, Lorena CeciliaSison, MargaritaZhumagambetov, RustamGodoy, Juan CarlosHaufe, StefanDepression predictionCOVID-19 pandemicMachine learningClassificationRegressionCollege studentsLongitudinal surveyArgentinaFil: López Steinmetz, Lorena Cecilia. Universidad Nacional de Córdoba. Facultad de Psicología; Argentina.Fil: López Steinmetz, Lorena Cecilia. Consejo Nacional de Investigaciones Científicas y Tecnológicas. Instituto de Investigaciones Psicológicas; Argentina.Fil: López Steinmetz, Lorena Cecilia. Technische Universität Berlin. Faculty IV Electrical Engineering and Computer Science. Chair of Uncertainty. Institute of Software Engineering and Theoretical Computer Science. Inverse Modeling and Machine Learning; Germany.Fil: Sison, Margarita. Charité – Universitätsmedizin Berlin. Berlin Center for Advanced Neuroimaging; Germany.Fil: Zhumagambetov, Rustam. Working Group 8.44 Machine Learning and Uncertainty. Mathematical Modelling and Data Analysis Department. Physikalisch-Technische Bundesanstalt Braunschweig und Berlin; Germany.Fil: Godoy, Juan Carlos. Universidad Nacional de Córdoba. Facultad de Psicología; Argentina.Fil: Godoy, Juan Carlos. Consejo Nacional de Investigaciones Científicas y Tecnológicas. Instituto de Investigaciones Psicológicas; Argentina.Fil: Haufe, Stefan. Technische Universität Berlin. Faculty IV Electrical Engineering and Computer Science. Chair of Uncertainty. Institute of Software Engineering and Theoretical Computer Science. Inverse Modeling and Machine Learning; Germany.Fil: Haufe, Stefan. Berlin Center for Advanced Neuroimaging (BCAN), Charité – Universitätsmedizin Berlin; Germany.Fil: Haufe, Stefan. Working Group 8.44 Machine Learning and Uncertainty. Mathematical Modelling and Data Analysis Department. Physikalisch-Technische Bundesanstalt Braunschweig und Berlin; Germany.Fil: Haufe, Stefan. Institute for Medical Informatics, Charité – Universitätsmedizin Berlin; Germany.Introduction: The COVID-19 pandemic has exacerbated mental health challenges, particularly depression among college students. Detecting at-risk students early is crucial but remains challenging, particularly in developing countries. Utilizing data-driven predictive models presents a viable solution to address this pressing need. Aims: 1) To develop and compare machine learning (ML) models for predicting depression in Argentinean students during the pandemic. 2) To assess the performance of classification and regression models using appropriate metrics. 3) To identify key features driving depression prediction. Methods: A longitudinal dataset (N = 1492 college students) captured T1 and T2 measurements during the Argentinean COVID-19 quarantine. ML models, including linear logistic regression classifiers/ridge regression (LogReg/RR), random forest classifiers/regressors, and support vector machines/regressors (SVM/SVR), are employed. Assessed features encompass depression and anxiety scores (at T1), mental disorder/suicidal behavior history, quarantine sub-period information, sex, and age. For classification, models’ performance on test data is evaluated using Area Under the Precision-Recall Curve (AUPRC), Area Under the Receiver Operating Characteristic curve, Balanced Accuracy, F1 score, and Brier loss. For regression, R-squared (R2), Mean Absolute Error, and Mean Squared Error are assessed. Univariate analyses are conducted to assess the predictive strength of each individual feature with respect to the target variable. The performance of multi- vs univariate models is compared using the mean AUPRC score for classifiers and the R2 score for regressors. Results: The highest performance is achieved by SVM and LogReg (e.g., AUPRC: 0.76, 95% CI: 0.69, 0.81) and SVR and RR models (e.g., R2 for SVR and RR: 0.56, 95% CI: 0.45, 0.64 and 0.45, 0.63, respectively). Univariate models, particularly LogReg and SVM using depression (AUPRC: 0.72, 95% CI: 0.64, 0.79) or anxiety scores (AUPRC: 0.71, 95% CI: 0.64, 0.78) and RR using depression scores (R2: 0.48, 95% CI: 0.39, 0.57) exhibit performance levels close to those of the multivariate models, which include all features. Discussion: These findings highlight the relevance of pre-existing depression and anxiety conditions in predicting depression during quarantine, underscoring their comorbidity. ML models, particularly SVM/SVR and LogReg/RR, demonstrate potential in the timely detection of at-risk students. However, further studies are needed before clinical implementation.info:eu-repo/semantics/publishedVersionFil: López Steinmetz, Lorena Cecilia. Universidad Nacional de Córdoba. Facultad de Psicología; Argentina.Fil: López Steinmetz, Lorena Cecilia. Consejo Nacional de Investigaciones Científicas y Tecnológicas. Instituto de Investigaciones Psicológicas; Argentina.Fil: López Steinmetz, Lorena Cecilia. Technische Universität Berlin. Faculty IV Electrical Engineering and Computer Science. Chair of Uncertainty. Institute of Software Engineering and Theoretical Computer Science. Inverse Modeling and Machine Learning; Germany.Fil: Sison, Margarita. Charité – Universitätsmedizin Berlin. Berlin Center for Advanced Neuroimaging; Germany.Fil: Zhumagambetov, Rustam. Working Group 8.44 Machine Learning and Uncertainty. Mathematical Modelling and Data Analysis Department. Physikalisch-Technische Bundesanstalt Braunschweig und Berlin; Germany.Fil: Godoy, Juan Carlos. Universidad Nacional de Córdoba. Facultad de Psicología; Argentina.Fil: Godoy, Juan Carlos. Consejo Nacional de Investigaciones Científicas y Tecnológicas. Instituto de Investigaciones Psicológicas; Argentina.Fil: Haufe, Stefan. Technische Universität Berlin. Faculty IV Electrical Engineering and Computer Science. Chair of Uncertainty. Institute of Software Engineering and Theoretical Computer Science. Inverse Modeling and Machine Learning; Germany.Fil: Haufe, Stefan. Berlin Center for Advanced Neuroimaging (BCAN), Charité – Universitätsmedizin Berlin; Germany.Fil: Haufe, Stefan. Working Group 8.44 Machine Learning and Uncertainty. Mathematical Modelling and Data Analysis Department. Physikalisch-Technische Bundesanstalt Braunschweig und Berlin; Germany.Fil: Haufe, Stefan. Institute for Medical Informatics, Charité – Universitätsmedizin Berlin; Germany.https://orcid.org/0000-0001-6255-4031https://orcid.org/0009-0002-5832-7375https://orcid.org/0000-0002-8061-4904https://orcid.org/0000-0002-1622-1647https://orcid.org/0000-0003-1470-91952024-04-16info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfLo´ pez Steinmetz LC, Sison M, Zhumagambetov R, Godoy JC and Haufe S (2024) Machine learning models predict the emergence of depression in Argentinean college students during periods of COVID-19 quarantine. Front. Psychiatry 15:1376784. doi: 10.3389/fpsyt.2024.1376784http://hdl.handle.net/11086/553286https://www.frontiersin.org/journals/psychiatryhttps://doi.org/10.3389/fpsyt.2024.1376784enginfo:eu-repo/semantics/openAccessreponame:Repositorio Digital Universitario (UNC)instname:Universidad Nacional de Córdobainstacron:UNC2025-09-29T13:42:18Zoai:rdu.unc.edu.ar:11086/553286Institucionalhttps://rdu.unc.edu.ar/Universidad públicaNo correspondehttp://rdu.unc.edu.ar/oai/snrdoca.unc@gmail.comArgentinaNo correspondeNo correspondeNo correspondeopendoar:25722025-09-29 13:42:19.027Repositorio Digital Universitario (UNC) - Universidad Nacional de Córdobafalse |
dc.title.none.fl_str_mv |
Machine learning models predict the emergence of depression in Argentinean college students during periods of COVID-19 quarantine |
title |
Machine learning models predict the emergence of depression in Argentinean college students during periods of COVID-19 quarantine |
spellingShingle |
Machine learning models predict the emergence of depression in Argentinean college students during periods of COVID-19 quarantine López Steinmetz, Lorena Cecilia Depression prediction COVID-19 pandemic Machine learning Classification Regression College students Longitudinal survey Argentina |
title_short |
Machine learning models predict the emergence of depression in Argentinean college students during periods of COVID-19 quarantine |
title_full |
Machine learning models predict the emergence of depression in Argentinean college students during periods of COVID-19 quarantine |
title_fullStr |
Machine learning models predict the emergence of depression in Argentinean college students during periods of COVID-19 quarantine |
title_full_unstemmed |
Machine learning models predict the emergence of depression in Argentinean college students during periods of COVID-19 quarantine |
title_sort |
Machine learning models predict the emergence of depression in Argentinean college students during periods of COVID-19 quarantine |
dc.creator.none.fl_str_mv |
López Steinmetz, Lorena Cecilia Sison, Margarita Zhumagambetov, Rustam Godoy, Juan Carlos Haufe, Stefan |
author |
López Steinmetz, Lorena Cecilia |
author_facet |
López Steinmetz, Lorena Cecilia Sison, Margarita Zhumagambetov, Rustam Godoy, Juan Carlos Haufe, Stefan |
author_role |
author |
author2 |
Sison, Margarita Zhumagambetov, Rustam Godoy, Juan Carlos Haufe, Stefan |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
https://orcid.org/0000-0001-6255-4031 https://orcid.org/0009-0002-5832-7375 https://orcid.org/0000-0002-8061-4904 https://orcid.org/0000-0002-1622-1647 https://orcid.org/0000-0003-1470-9195 |
dc.subject.none.fl_str_mv |
Depression prediction COVID-19 pandemic Machine learning Classification Regression College students Longitudinal survey Argentina |
topic |
Depression prediction COVID-19 pandemic Machine learning Classification Regression College students Longitudinal survey Argentina |
dc.description.none.fl_txt_mv |
Fil: López Steinmetz, Lorena Cecilia. Universidad Nacional de Córdoba. Facultad de Psicología; Argentina. Fil: López Steinmetz, Lorena Cecilia. Consejo Nacional de Investigaciones Científicas y Tecnológicas. Instituto de Investigaciones Psicológicas; Argentina. Fil: López Steinmetz, Lorena Cecilia. Technische Universität Berlin. Faculty IV Electrical Engineering and Computer Science. Chair of Uncertainty. Institute of Software Engineering and Theoretical Computer Science. Inverse Modeling and Machine Learning; Germany. Fil: Sison, Margarita. Charité – Universitätsmedizin Berlin. Berlin Center for Advanced Neuroimaging; Germany. Fil: Zhumagambetov, Rustam. Working Group 8.44 Machine Learning and Uncertainty. Mathematical Modelling and Data Analysis Department. Physikalisch-Technische Bundesanstalt Braunschweig und Berlin; Germany. Fil: Godoy, Juan Carlos. Universidad Nacional de Córdoba. Facultad de Psicología; Argentina. Fil: Godoy, Juan Carlos. Consejo Nacional de Investigaciones Científicas y Tecnológicas. Instituto de Investigaciones Psicológicas; Argentina. Fil: Haufe, Stefan. Technische Universität Berlin. Faculty IV Electrical Engineering and Computer Science. Chair of Uncertainty. Institute of Software Engineering and Theoretical Computer Science. Inverse Modeling and Machine Learning; Germany. Fil: Haufe, Stefan. Berlin Center for Advanced Neuroimaging (BCAN), Charité – Universitätsmedizin Berlin; Germany. Fil: Haufe, Stefan. Working Group 8.44 Machine Learning and Uncertainty. Mathematical Modelling and Data Analysis Department. Physikalisch-Technische Bundesanstalt Braunschweig und Berlin; Germany. Fil: Haufe, Stefan. Institute for Medical Informatics, Charité – Universitätsmedizin Berlin; Germany. Introduction: The COVID-19 pandemic has exacerbated mental health challenges, particularly depression among college students. Detecting at-risk students early is crucial but remains challenging, particularly in developing countries. Utilizing data-driven predictive models presents a viable solution to address this pressing need. Aims: 1) To develop and compare machine learning (ML) models for predicting depression in Argentinean students during the pandemic. 2) To assess the performance of classification and regression models using appropriate metrics. 3) To identify key features driving depression prediction. Methods: A longitudinal dataset (N = 1492 college students) captured T1 and T2 measurements during the Argentinean COVID-19 quarantine. ML models, including linear logistic regression classifiers/ridge regression (LogReg/RR), random forest classifiers/regressors, and support vector machines/regressors (SVM/SVR), are employed. Assessed features encompass depression and anxiety scores (at T1), mental disorder/suicidal behavior history, quarantine sub-period information, sex, and age. For classification, models’ performance on test data is evaluated using Area Under the Precision-Recall Curve (AUPRC), Area Under the Receiver Operating Characteristic curve, Balanced Accuracy, F1 score, and Brier loss. For regression, R-squared (R2), Mean Absolute Error, and Mean Squared Error are assessed. Univariate analyses are conducted to assess the predictive strength of each individual feature with respect to the target variable. The performance of multi- vs univariate models is compared using the mean AUPRC score for classifiers and the R2 score for regressors. Results: The highest performance is achieved by SVM and LogReg (e.g., AUPRC: 0.76, 95% CI: 0.69, 0.81) and SVR and RR models (e.g., R2 for SVR and RR: 0.56, 95% CI: 0.45, 0.64 and 0.45, 0.63, respectively). Univariate models, particularly LogReg and SVM using depression (AUPRC: 0.72, 95% CI: 0.64, 0.79) or anxiety scores (AUPRC: 0.71, 95% CI: 0.64, 0.78) and RR using depression scores (R2: 0.48, 95% CI: 0.39, 0.57) exhibit performance levels close to those of the multivariate models, which include all features. Discussion: These findings highlight the relevance of pre-existing depression and anxiety conditions in predicting depression during quarantine, underscoring their comorbidity. ML models, particularly SVM/SVR and LogReg/RR, demonstrate potential in the timely detection of at-risk students. However, further studies are needed before clinical implementation. info:eu-repo/semantics/publishedVersion Fil: López Steinmetz, Lorena Cecilia. Universidad Nacional de Córdoba. Facultad de Psicología; Argentina. Fil: López Steinmetz, Lorena Cecilia. Consejo Nacional de Investigaciones Científicas y Tecnológicas. Instituto de Investigaciones Psicológicas; Argentina. Fil: López Steinmetz, Lorena Cecilia. Technische Universität Berlin. Faculty IV Electrical Engineering and Computer Science. Chair of Uncertainty. Institute of Software Engineering and Theoretical Computer Science. Inverse Modeling and Machine Learning; Germany. Fil: Sison, Margarita. Charité – Universitätsmedizin Berlin. Berlin Center for Advanced Neuroimaging; Germany. Fil: Zhumagambetov, Rustam. Working Group 8.44 Machine Learning and Uncertainty. Mathematical Modelling and Data Analysis Department. Physikalisch-Technische Bundesanstalt Braunschweig und Berlin; Germany. Fil: Godoy, Juan Carlos. Universidad Nacional de Córdoba. Facultad de Psicología; Argentina. Fil: Godoy, Juan Carlos. Consejo Nacional de Investigaciones Científicas y Tecnológicas. Instituto de Investigaciones Psicológicas; Argentina. Fil: Haufe, Stefan. Technische Universität Berlin. Faculty IV Electrical Engineering and Computer Science. Chair of Uncertainty. Institute of Software Engineering and Theoretical Computer Science. Inverse Modeling and Machine Learning; Germany. Fil: Haufe, Stefan. Berlin Center for Advanced Neuroimaging (BCAN), Charité – Universitätsmedizin Berlin; Germany. Fil: Haufe, Stefan. Working Group 8.44 Machine Learning and Uncertainty. Mathematical Modelling and Data Analysis Department. Physikalisch-Technische Bundesanstalt Braunschweig und Berlin; Germany. Fil: Haufe, Stefan. Institute for Medical Informatics, Charité – Universitätsmedizin Berlin; Germany. |
description |
Fil: López Steinmetz, Lorena Cecilia. Universidad Nacional de Córdoba. Facultad de Psicología; Argentina. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-04-16 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/article http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
status_str |
publishedVersion |
format |
article |
dc.identifier.none.fl_str_mv |
Lo´ pez Steinmetz LC, Sison M, Zhumagambetov R, Godoy JC and Haufe S (2024) Machine learning models predict the emergence of depression in Argentinean college students during periods of COVID-19 quarantine. Front. Psychiatry 15:1376784. doi: 10.3389/fpsyt.2024.1376784 http://hdl.handle.net/11086/553286 https://www.frontiersin.org/journals/psychiatry https://doi.org/10.3389/fpsyt.2024.1376784 |
identifier_str_mv |
Lo´ pez Steinmetz LC, Sison M, Zhumagambetov R, Godoy JC and Haufe S (2024) Machine learning models predict the emergence of depression in Argentinean college students during periods of COVID-19 quarantine. Front. Psychiatry 15:1376784. doi: 10.3389/fpsyt.2024.1376784 |
url |
http://hdl.handle.net/11086/553286 https://www.frontiersin.org/journals/psychiatry https://doi.org/10.3389/fpsyt.2024.1376784 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositorio Digital Universitario (UNC) instname:Universidad Nacional de Córdoba instacron:UNC |
reponame_str |
Repositorio Digital Universitario (UNC) |
collection |
Repositorio Digital Universitario (UNC) |
instname_str |
Universidad Nacional de Córdoba |
instacron_str |
UNC |
institution |
UNC |
repository.name.fl_str_mv |
Repositorio Digital Universitario (UNC) - Universidad Nacional de Córdoba |
repository.mail.fl_str_mv |
oca.unc@gmail.com |
_version_ |
1844618924176441344 |
score |
13.070432 |