Machine learning models predict the emergence of depression in Argentinean college students during periods of COVID-19 quarantine

Autores
López Steinmetz, Lorena Cecilia; Sison, Margarita; Zhumagambetov, Rustam; Godoy, Juan Carlos; Haufe, Stefan
Año de publicación
2024
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Fil: López Steinmetz, Lorena Cecilia. Universidad Nacional de Córdoba. Facultad de Psicología; Argentina.
Fil: López Steinmetz, Lorena Cecilia. Consejo Nacional de Investigaciones Científicas y Tecnológicas. Instituto de Investigaciones Psicológicas; Argentina.
Fil: López Steinmetz, Lorena Cecilia. Technische Universität Berlin. Faculty IV Electrical Engineering and Computer Science. Chair of Uncertainty. Institute of Software Engineering and Theoretical Computer Science. Inverse Modeling and Machine Learning; Germany.
Fil: Sison, Margarita. Charité – Universitätsmedizin Berlin. Berlin Center for Advanced Neuroimaging; Germany.
Fil: Zhumagambetov, Rustam. Working Group 8.44 Machine Learning and Uncertainty. Mathematical Modelling and Data Analysis Department. Physikalisch-Technische Bundesanstalt Braunschweig und Berlin; Germany.
Fil: Godoy, Juan Carlos. Universidad Nacional de Córdoba. Facultad de Psicología; Argentina.
Fil: Godoy, Juan Carlos. Consejo Nacional de Investigaciones Científicas y Tecnológicas. Instituto de Investigaciones Psicológicas; Argentina.
Fil: Haufe, Stefan. Technische Universität Berlin. Faculty IV Electrical Engineering and Computer Science. Chair of Uncertainty. Institute of Software Engineering and Theoretical Computer Science. Inverse Modeling and Machine Learning; Germany.
Fil: Haufe, Stefan. Berlin Center for Advanced Neuroimaging (BCAN), Charité – Universitätsmedizin Berlin; Germany.
Fil: Haufe, Stefan. Working Group 8.44 Machine Learning and Uncertainty. Mathematical Modelling and Data Analysis Department. Physikalisch-Technische Bundesanstalt Braunschweig und Berlin; Germany.
Fil: Haufe, Stefan. Institute for Medical Informatics, Charité – Universitätsmedizin Berlin; Germany.
Introduction: The COVID-19 pandemic has exacerbated mental health challenges, particularly depression among college students. Detecting at-risk students early is crucial but remains challenging, particularly in developing countries. Utilizing data-driven predictive models presents a viable solution to address this pressing need. Aims: 1) To develop and compare machine learning (ML) models for predicting depression in Argentinean students during the pandemic. 2) To assess the performance of classification and regression models using appropriate metrics. 3) To identify key features driving depression prediction. Methods: A longitudinal dataset (N = 1492 college students) captured T1 and T2 measurements during the Argentinean COVID-19 quarantine. ML models, including linear logistic regression classifiers/ridge regression (LogReg/RR), random forest classifiers/regressors, and support vector machines/regressors (SVM/SVR), are employed. Assessed features encompass depression and anxiety scores (at T1), mental disorder/suicidal behavior history, quarantine sub-period information, sex, and age. For classification, models’ performance on test data is evaluated using Area Under the Precision-Recall Curve (AUPRC), Area Under the Receiver Operating Characteristic curve, Balanced Accuracy, F1 score, and Brier loss. For regression, R-squared (R2), Mean Absolute Error, and Mean Squared Error are assessed. Univariate analyses are conducted to assess the predictive strength of each individual feature with respect to the target variable. The performance of multi- vs univariate models is compared using the mean AUPRC score for classifiers and the R2 score for regressors. Results: The highest performance is achieved by SVM and LogReg (e.g., AUPRC: 0.76, 95% CI: 0.69, 0.81) and SVR and RR models (e.g., R2 for SVR and RR: 0.56, 95% CI: 0.45, 0.64 and 0.45, 0.63, respectively). Univariate models, particularly LogReg and SVM using depression (AUPRC: 0.72, 95% CI: 0.64, 0.79) or anxiety scores (AUPRC: 0.71, 95% CI: 0.64, 0.78) and RR using depression scores (R2: 0.48, 95% CI: 0.39, 0.57) exhibit performance levels close to those of the multivariate models, which include all features. Discussion: These findings highlight the relevance of pre-existing depression and anxiety conditions in predicting depression during quarantine, underscoring their comorbidity. ML models, particularly SVM/SVR and LogReg/RR, demonstrate potential in the timely detection of at-risk students. However, further studies are needed before clinical implementation.
info:eu-repo/semantics/publishedVersion
Fil: López Steinmetz, Lorena Cecilia. Universidad Nacional de Córdoba. Facultad de Psicología; Argentina.
Fil: López Steinmetz, Lorena Cecilia. Consejo Nacional de Investigaciones Científicas y Tecnológicas. Instituto de Investigaciones Psicológicas; Argentina.
Fil: López Steinmetz, Lorena Cecilia. Technische Universität Berlin. Faculty IV Electrical Engineering and Computer Science. Chair of Uncertainty. Institute of Software Engineering and Theoretical Computer Science. Inverse Modeling and Machine Learning; Germany.
Fil: Sison, Margarita. Charité – Universitätsmedizin Berlin. Berlin Center for Advanced Neuroimaging; Germany.
Fil: Zhumagambetov, Rustam. Working Group 8.44 Machine Learning and Uncertainty. Mathematical Modelling and Data Analysis Department. Physikalisch-Technische Bundesanstalt Braunschweig und Berlin; Germany.
Fil: Godoy, Juan Carlos. Universidad Nacional de Córdoba. Facultad de Psicología; Argentina.
Fil: Godoy, Juan Carlos. Consejo Nacional de Investigaciones Científicas y Tecnológicas. Instituto de Investigaciones Psicológicas; Argentina.
Fil: Haufe, Stefan. Technische Universität Berlin. Faculty IV Electrical Engineering and Computer Science. Chair of Uncertainty. Institute of Software Engineering and Theoretical Computer Science. Inverse Modeling and Machine Learning; Germany.
Fil: Haufe, Stefan. Berlin Center for Advanced Neuroimaging (BCAN), Charité – Universitätsmedizin Berlin; Germany.
Fil: Haufe, Stefan. Working Group 8.44 Machine Learning and Uncertainty. Mathematical Modelling and Data Analysis Department. Physikalisch-Technische Bundesanstalt Braunschweig und Berlin; Germany.
Fil: Haufe, Stefan. Institute for Medical Informatics, Charité – Universitätsmedizin Berlin; Germany.
Materia
Depression prediction
COVID-19 pandemic
Machine learning
Classification
Regression
College students
Longitudinal survey
Argentina
Nivel de accesibilidad
acceso abierto
Condiciones de uso
Repositorio
Repositorio Digital Universitario (UNC)
Institución
Universidad Nacional de Córdoba
OAI Identificador
oai:rdu.unc.edu.ar:11086/553286

id RDUUNC_b6ce2b1ba1917123df433da2ba6397a2
oai_identifier_str oai:rdu.unc.edu.ar:11086/553286
network_acronym_str RDUUNC
repository_id_str 2572
network_name_str Repositorio Digital Universitario (UNC)
spelling Machine learning models predict the emergence of depression in Argentinean college students during periods of COVID-19 quarantineLópez Steinmetz, Lorena CeciliaSison, MargaritaZhumagambetov, RustamGodoy, Juan CarlosHaufe, StefanDepression predictionCOVID-19 pandemicMachine learningClassificationRegressionCollege studentsLongitudinal surveyArgentinaFil: López Steinmetz, Lorena Cecilia. Universidad Nacional de Córdoba. Facultad de Psicología; Argentina.Fil: López Steinmetz, Lorena Cecilia. Consejo Nacional de Investigaciones Científicas y Tecnológicas. Instituto de Investigaciones Psicológicas; Argentina.Fil: López Steinmetz, Lorena Cecilia. Technische Universität Berlin. Faculty IV Electrical Engineering and Computer Science. Chair of Uncertainty. Institute of Software Engineering and Theoretical Computer Science. Inverse Modeling and Machine Learning; Germany.Fil: Sison, Margarita. Charité – Universitätsmedizin Berlin. Berlin Center for Advanced Neuroimaging; Germany.Fil: Zhumagambetov, Rustam. Working Group 8.44 Machine Learning and Uncertainty. Mathematical Modelling and Data Analysis Department. Physikalisch-Technische Bundesanstalt Braunschweig und Berlin; Germany.Fil: Godoy, Juan Carlos. Universidad Nacional de Córdoba. Facultad de Psicología; Argentina.Fil: Godoy, Juan Carlos. Consejo Nacional de Investigaciones Científicas y Tecnológicas. Instituto de Investigaciones Psicológicas; Argentina.Fil: Haufe, Stefan. Technische Universität Berlin. Faculty IV Electrical Engineering and Computer Science. Chair of Uncertainty. Institute of Software Engineering and Theoretical Computer Science. Inverse Modeling and Machine Learning; Germany.Fil: Haufe, Stefan. Berlin Center for Advanced Neuroimaging (BCAN), Charité – Universitätsmedizin Berlin; Germany.Fil: Haufe, Stefan. Working Group 8.44 Machine Learning and Uncertainty. Mathematical Modelling and Data Analysis Department. Physikalisch-Technische Bundesanstalt Braunschweig und Berlin; Germany.Fil: Haufe, Stefan. Institute for Medical Informatics, Charité – Universitätsmedizin Berlin; Germany.Introduction: The COVID-19 pandemic has exacerbated mental health challenges, particularly depression among college students. Detecting at-risk students early is crucial but remains challenging, particularly in developing countries. Utilizing data-driven predictive models presents a viable solution to address this pressing need. Aims: 1) To develop and compare machine learning (ML) models for predicting depression in Argentinean students during the pandemic. 2) To assess the performance of classification and regression models using appropriate metrics. 3) To identify key features driving depression prediction. Methods: A longitudinal dataset (N = 1492 college students) captured T1 and T2 measurements during the Argentinean COVID-19 quarantine. ML models, including linear logistic regression classifiers/ridge regression (LogReg/RR), random forest classifiers/regressors, and support vector machines/regressors (SVM/SVR), are employed. Assessed features encompass depression and anxiety scores (at T1), mental disorder/suicidal behavior history, quarantine sub-period information, sex, and age. For classification, models’ performance on test data is evaluated using Area Under the Precision-Recall Curve (AUPRC), Area Under the Receiver Operating Characteristic curve, Balanced Accuracy, F1 score, and Brier loss. For regression, R-squared (R2), Mean Absolute Error, and Mean Squared Error are assessed. Univariate analyses are conducted to assess the predictive strength of each individual feature with respect to the target variable. The performance of multi- vs univariate models is compared using the mean AUPRC score for classifiers and the R2 score for regressors. Results: The highest performance is achieved by SVM and LogReg (e.g., AUPRC: 0.76, 95% CI: 0.69, 0.81) and SVR and RR models (e.g., R2 for SVR and RR: 0.56, 95% CI: 0.45, 0.64 and 0.45, 0.63, respectively). Univariate models, particularly LogReg and SVM using depression (AUPRC: 0.72, 95% CI: 0.64, 0.79) or anxiety scores (AUPRC: 0.71, 95% CI: 0.64, 0.78) and RR using depression scores (R2: 0.48, 95% CI: 0.39, 0.57) exhibit performance levels close to those of the multivariate models, which include all features. Discussion: These findings highlight the relevance of pre-existing depression and anxiety conditions in predicting depression during quarantine, underscoring their comorbidity. ML models, particularly SVM/SVR and LogReg/RR, demonstrate potential in the timely detection of at-risk students. However, further studies are needed before clinical implementation.info:eu-repo/semantics/publishedVersionFil: López Steinmetz, Lorena Cecilia. Universidad Nacional de Córdoba. Facultad de Psicología; Argentina.Fil: López Steinmetz, Lorena Cecilia. Consejo Nacional de Investigaciones Científicas y Tecnológicas. Instituto de Investigaciones Psicológicas; Argentina.Fil: López Steinmetz, Lorena Cecilia. Technische Universität Berlin. Faculty IV Electrical Engineering and Computer Science. Chair of Uncertainty. Institute of Software Engineering and Theoretical Computer Science. Inverse Modeling and Machine Learning; Germany.Fil: Sison, Margarita. Charité – Universitätsmedizin Berlin. Berlin Center for Advanced Neuroimaging; Germany.Fil: Zhumagambetov, Rustam. Working Group 8.44 Machine Learning and Uncertainty. Mathematical Modelling and Data Analysis Department. Physikalisch-Technische Bundesanstalt Braunschweig und Berlin; Germany.Fil: Godoy, Juan Carlos. Universidad Nacional de Córdoba. Facultad de Psicología; Argentina.Fil: Godoy, Juan Carlos. Consejo Nacional de Investigaciones Científicas y Tecnológicas. Instituto de Investigaciones Psicológicas; Argentina.Fil: Haufe, Stefan. Technische Universität Berlin. Faculty IV Electrical Engineering and Computer Science. Chair of Uncertainty. Institute of Software Engineering and Theoretical Computer Science. Inverse Modeling and Machine Learning; Germany.Fil: Haufe, Stefan. Berlin Center for Advanced Neuroimaging (BCAN), Charité – Universitätsmedizin Berlin; Germany.Fil: Haufe, Stefan. Working Group 8.44 Machine Learning and Uncertainty. Mathematical Modelling and Data Analysis Department. Physikalisch-Technische Bundesanstalt Braunschweig und Berlin; Germany.Fil: Haufe, Stefan. Institute for Medical Informatics, Charité – Universitätsmedizin Berlin; Germany.https://orcid.org/0000-0001-6255-4031https://orcid.org/0009-0002-5832-7375https://orcid.org/0000-0002-8061-4904https://orcid.org/0000-0002-1622-1647https://orcid.org/0000-0003-1470-91952024-04-16info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfLo´ pez Steinmetz LC, Sison M, Zhumagambetov R, Godoy JC and Haufe S (2024) Machine learning models predict the emergence of depression in Argentinean college students during periods of COVID-19 quarantine. Front. Psychiatry 15:1376784. doi: 10.3389/fpsyt.2024.1376784http://hdl.handle.net/11086/553286https://www.frontiersin.org/journals/psychiatryhttps://doi.org/10.3389/fpsyt.2024.1376784enginfo:eu-repo/semantics/openAccessreponame:Repositorio Digital Universitario (UNC)instname:Universidad Nacional de Córdobainstacron:UNC2025-09-29T13:42:18Zoai:rdu.unc.edu.ar:11086/553286Institucionalhttps://rdu.unc.edu.ar/Universidad públicaNo correspondehttp://rdu.unc.edu.ar/oai/snrdoca.unc@gmail.comArgentinaNo correspondeNo correspondeNo correspondeopendoar:25722025-09-29 13:42:19.027Repositorio Digital Universitario (UNC) - Universidad Nacional de Córdobafalse
dc.title.none.fl_str_mv Machine learning models predict the emergence of depression in Argentinean college students during periods of COVID-19 quarantine
title Machine learning models predict the emergence of depression in Argentinean college students during periods of COVID-19 quarantine
spellingShingle Machine learning models predict the emergence of depression in Argentinean college students during periods of COVID-19 quarantine
López Steinmetz, Lorena Cecilia
Depression prediction
COVID-19 pandemic
Machine learning
Classification
Regression
College students
Longitudinal survey
Argentina
title_short Machine learning models predict the emergence of depression in Argentinean college students during periods of COVID-19 quarantine
title_full Machine learning models predict the emergence of depression in Argentinean college students during periods of COVID-19 quarantine
title_fullStr Machine learning models predict the emergence of depression in Argentinean college students during periods of COVID-19 quarantine
title_full_unstemmed Machine learning models predict the emergence of depression in Argentinean college students during periods of COVID-19 quarantine
title_sort Machine learning models predict the emergence of depression in Argentinean college students during periods of COVID-19 quarantine
dc.creator.none.fl_str_mv López Steinmetz, Lorena Cecilia
Sison, Margarita
Zhumagambetov, Rustam
Godoy, Juan Carlos
Haufe, Stefan
author López Steinmetz, Lorena Cecilia
author_facet López Steinmetz, Lorena Cecilia
Sison, Margarita
Zhumagambetov, Rustam
Godoy, Juan Carlos
Haufe, Stefan
author_role author
author2 Sison, Margarita
Zhumagambetov, Rustam
Godoy, Juan Carlos
Haufe, Stefan
author2_role author
author
author
author
dc.contributor.none.fl_str_mv https://orcid.org/0000-0001-6255-4031
https://orcid.org/0009-0002-5832-7375
https://orcid.org/0000-0002-8061-4904
https://orcid.org/0000-0002-1622-1647
https://orcid.org/0000-0003-1470-9195
dc.subject.none.fl_str_mv Depression prediction
COVID-19 pandemic
Machine learning
Classification
Regression
College students
Longitudinal survey
Argentina
topic Depression prediction
COVID-19 pandemic
Machine learning
Classification
Regression
College students
Longitudinal survey
Argentina
dc.description.none.fl_txt_mv Fil: López Steinmetz, Lorena Cecilia. Universidad Nacional de Córdoba. Facultad de Psicología; Argentina.
Fil: López Steinmetz, Lorena Cecilia. Consejo Nacional de Investigaciones Científicas y Tecnológicas. Instituto de Investigaciones Psicológicas; Argentina.
Fil: López Steinmetz, Lorena Cecilia. Technische Universität Berlin. Faculty IV Electrical Engineering and Computer Science. Chair of Uncertainty. Institute of Software Engineering and Theoretical Computer Science. Inverse Modeling and Machine Learning; Germany.
Fil: Sison, Margarita. Charité – Universitätsmedizin Berlin. Berlin Center for Advanced Neuroimaging; Germany.
Fil: Zhumagambetov, Rustam. Working Group 8.44 Machine Learning and Uncertainty. Mathematical Modelling and Data Analysis Department. Physikalisch-Technische Bundesanstalt Braunschweig und Berlin; Germany.
Fil: Godoy, Juan Carlos. Universidad Nacional de Córdoba. Facultad de Psicología; Argentina.
Fil: Godoy, Juan Carlos. Consejo Nacional de Investigaciones Científicas y Tecnológicas. Instituto de Investigaciones Psicológicas; Argentina.
Fil: Haufe, Stefan. Technische Universität Berlin. Faculty IV Electrical Engineering and Computer Science. Chair of Uncertainty. Institute of Software Engineering and Theoretical Computer Science. Inverse Modeling and Machine Learning; Germany.
Fil: Haufe, Stefan. Berlin Center for Advanced Neuroimaging (BCAN), Charité – Universitätsmedizin Berlin; Germany.
Fil: Haufe, Stefan. Working Group 8.44 Machine Learning and Uncertainty. Mathematical Modelling and Data Analysis Department. Physikalisch-Technische Bundesanstalt Braunschweig und Berlin; Germany.
Fil: Haufe, Stefan. Institute for Medical Informatics, Charité – Universitätsmedizin Berlin; Germany.
Introduction: The COVID-19 pandemic has exacerbated mental health challenges, particularly depression among college students. Detecting at-risk students early is crucial but remains challenging, particularly in developing countries. Utilizing data-driven predictive models presents a viable solution to address this pressing need. Aims: 1) To develop and compare machine learning (ML) models for predicting depression in Argentinean students during the pandemic. 2) To assess the performance of classification and regression models using appropriate metrics. 3) To identify key features driving depression prediction. Methods: A longitudinal dataset (N = 1492 college students) captured T1 and T2 measurements during the Argentinean COVID-19 quarantine. ML models, including linear logistic regression classifiers/ridge regression (LogReg/RR), random forest classifiers/regressors, and support vector machines/regressors (SVM/SVR), are employed. Assessed features encompass depression and anxiety scores (at T1), mental disorder/suicidal behavior history, quarantine sub-period information, sex, and age. For classification, models’ performance on test data is evaluated using Area Under the Precision-Recall Curve (AUPRC), Area Under the Receiver Operating Characteristic curve, Balanced Accuracy, F1 score, and Brier loss. For regression, R-squared (R2), Mean Absolute Error, and Mean Squared Error are assessed. Univariate analyses are conducted to assess the predictive strength of each individual feature with respect to the target variable. The performance of multi- vs univariate models is compared using the mean AUPRC score for classifiers and the R2 score for regressors. Results: The highest performance is achieved by SVM and LogReg (e.g., AUPRC: 0.76, 95% CI: 0.69, 0.81) and SVR and RR models (e.g., R2 for SVR and RR: 0.56, 95% CI: 0.45, 0.64 and 0.45, 0.63, respectively). Univariate models, particularly LogReg and SVM using depression (AUPRC: 0.72, 95% CI: 0.64, 0.79) or anxiety scores (AUPRC: 0.71, 95% CI: 0.64, 0.78) and RR using depression scores (R2: 0.48, 95% CI: 0.39, 0.57) exhibit performance levels close to those of the multivariate models, which include all features. Discussion: These findings highlight the relevance of pre-existing depression and anxiety conditions in predicting depression during quarantine, underscoring their comorbidity. ML models, particularly SVM/SVR and LogReg/RR, demonstrate potential in the timely detection of at-risk students. However, further studies are needed before clinical implementation.
info:eu-repo/semantics/publishedVersion
Fil: López Steinmetz, Lorena Cecilia. Universidad Nacional de Córdoba. Facultad de Psicología; Argentina.
Fil: López Steinmetz, Lorena Cecilia. Consejo Nacional de Investigaciones Científicas y Tecnológicas. Instituto de Investigaciones Psicológicas; Argentina.
Fil: López Steinmetz, Lorena Cecilia. Technische Universität Berlin. Faculty IV Electrical Engineering and Computer Science. Chair of Uncertainty. Institute of Software Engineering and Theoretical Computer Science. Inverse Modeling and Machine Learning; Germany.
Fil: Sison, Margarita. Charité – Universitätsmedizin Berlin. Berlin Center for Advanced Neuroimaging; Germany.
Fil: Zhumagambetov, Rustam. Working Group 8.44 Machine Learning and Uncertainty. Mathematical Modelling and Data Analysis Department. Physikalisch-Technische Bundesanstalt Braunschweig und Berlin; Germany.
Fil: Godoy, Juan Carlos. Universidad Nacional de Córdoba. Facultad de Psicología; Argentina.
Fil: Godoy, Juan Carlos. Consejo Nacional de Investigaciones Científicas y Tecnológicas. Instituto de Investigaciones Psicológicas; Argentina.
Fil: Haufe, Stefan. Technische Universität Berlin. Faculty IV Electrical Engineering and Computer Science. Chair of Uncertainty. Institute of Software Engineering and Theoretical Computer Science. Inverse Modeling and Machine Learning; Germany.
Fil: Haufe, Stefan. Berlin Center for Advanced Neuroimaging (BCAN), Charité – Universitätsmedizin Berlin; Germany.
Fil: Haufe, Stefan. Working Group 8.44 Machine Learning and Uncertainty. Mathematical Modelling and Data Analysis Department. Physikalisch-Technische Bundesanstalt Braunschweig und Berlin; Germany.
Fil: Haufe, Stefan. Institute for Medical Informatics, Charité – Universitätsmedizin Berlin; Germany.
description Fil: López Steinmetz, Lorena Cecilia. Universidad Nacional de Córdoba. Facultad de Psicología; Argentina.
publishDate 2024
dc.date.none.fl_str_mv 2024-04-16
dc.type.none.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/article
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
status_str publishedVersion
format article
dc.identifier.none.fl_str_mv Lo´ pez Steinmetz LC, Sison M, Zhumagambetov R, Godoy JC and Haufe S (2024) Machine learning models predict the emergence of depression in Argentinean college students during periods of COVID-19 quarantine. Front. Psychiatry 15:1376784. doi: 10.3389/fpsyt.2024.1376784
http://hdl.handle.net/11086/553286
https://www.frontiersin.org/journals/psychiatry
https://doi.org/10.3389/fpsyt.2024.1376784
identifier_str_mv Lo´ pez Steinmetz LC, Sison M, Zhumagambetov R, Godoy JC and Haufe S (2024) Machine learning models predict the emergence of depression in Argentinean college students during periods of COVID-19 quarantine. Front. Psychiatry 15:1376784. doi: 10.3389/fpsyt.2024.1376784
url http://hdl.handle.net/11086/553286
https://www.frontiersin.org/journals/psychiatry
https://doi.org/10.3389/fpsyt.2024.1376784
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositorio Digital Universitario (UNC)
instname:Universidad Nacional de Córdoba
instacron:UNC
reponame_str Repositorio Digital Universitario (UNC)
collection Repositorio Digital Universitario (UNC)
instname_str Universidad Nacional de Córdoba
instacron_str UNC
institution UNC
repository.name.fl_str_mv Repositorio Digital Universitario (UNC) - Universidad Nacional de Córdoba
repository.mail.fl_str_mv oca.unc@gmail.com
_version_ 1844618924176441344
score 13.070432