Relation-changing modal logics

Autores
Fervari, Raúl Alberto
Año de publicación
2014
Idioma
inglés
Tipo de recurso
tesis doctoral
Estado
versión publicada
Colaborador/a o director/a de tesis
Areces, Carlos Eduardo
Descripción
Tesis (Doctor en Cs. de la Computación)--Universidad Nacional de Córdoba, Facultad de Matemática, Astronomía y Física, 2014.
Fil: Fervari, Raúl Alberto. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física; Argentina.
En esta tesis investigamos operadores modales dinámicos que pueden cambiar el modelo durante la evaluación de una fórmula. En particular, extendemos el lenguaje modal básico con modalidades que son capaces de invertir, borrar o agregar pares de elementos relacionados. Estudiamos la versión local de los operadores (es decir,la realización de modificaciones desde el punto de evaluación) y la versión global(cambiar arbitrariamente el modelo). Investigamos varias propiedades de los lenguajes introducidos, desde un punto de vista abstracto. En primer lugar, se introduce la semántica formal de los modificadores de modelo, e inmediatamente se introduce una noción de bisimulación. Las bisimulaciones son una herramienta importante para investigar el poder expresivo de los lenguajes introducidos en esta tesis. Se demostró que todas los lenguajes son incomparables entre sí en términos de poder expresivo (a excepción de los dos versiones de swap, aunque conjeturamos que también ́en son incomparables). Continuamos por investigar el comportamiento computacional de este tipo de operadores. En primer lugar, demostramos que el problema de satisfactibilidad para las versiones locales de las lógicas que cambian la relación que investigamos es indecidible. También demostramos que el problema de model checking es PSPACE-completo para las seis lógicas. Finalmente, investigamos model checking fijando el modelo y fijando la fórmula (problemas conocidos como complejidad de fórmula y complejidad del programa, respectivamente). Es posible también definir métodos para comprobar satisfactibilidad que no necesariamente terminan. Introducimos métodos de tableau para las lógicas que cambian las relaciones y demostramos que todos estos métodos son correctos y completos y mostramos algunos aplicaciones. En la última parte de la tesis, se discute un contexto concreto en el que pueden aplicarse las lógicas modales que cambian la relación: Lógicas Dinámicas Epistémicas (DEL, por las siglas en inglés). Definimos una lógica que cambia la relación capaz de codificar DEL, e investigamos su comportamiento computacional.
In this thesis we study dynamic modal operators that can change the model during the evaluation of a formula. In particular, we extend the basic modal language with modalities that are able to swap, delete or add pairs of related elements of the domain. We call the resulting logics Relation-Changing Modal Logics. We study local version of the operators (performing modifications from the evaluation point) and global version (changing arbitrarily edges in the model). We investigate several properties of the given languages, from an abstract point of view. First, we introduce the formal semantics of the model modifiers, afterwards we introduce a notion of bisimulation. Bisimulations are an important tool to investigate the expressive power of the languages introduced in this thesis. We show that all the languages are incomparable among them in terms of expressive power (except for the two versions of swap, which we conjecture are also incomparable). We continue by investigating the computational behaviour of this kind of operators. First, we prove that the satisfiability problem for some of the relation-changing modal logics we investigate is undecidable. Then, we prove that the model checking problem is PSpace-complete for the six logics. Finally, we investigate model checking fixing the model and fixing the formula (problems known as formula and program complexity, respectively). We show that it is possible to define complete but non-terminating methods to check satisfiability. We introduce tableau methods for relation-changing modal logics and we prove that all these methods are sound and complete, and we show some applications. In the last part of the thesis, we discuss a concrete context in which we can apply relation-changing modal logics: Dynamic Epistemic Logics (DEL). We motivate the use of the kind of logics that we investigate in this new framework, and we introduce some examples of DEL. Finally, we define a new relation-changing modal logic that embeds DEL and we investigate its computational behaviour.
Fil: Fervari, Raúl Alberto. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física; Argentina.
Materia
Lógicas modales
Operadores de cambio de accesibilidad
Operadores dinámicos
Poder expresivo
Complejidad
Decidibilidad
Lógicas dinámicas epistémicas
Modal logics
Relation-changing operators
Dynamic operators
Bisimulations
Expressive power
Complexity
Decidability
Dynamic epistemic logics
Nivel de accesibilidad
acceso abierto
Condiciones de uso
Repositorio
Repositorio Digital Universitario (UNC)
Institución
Universidad Nacional de Córdoba
OAI Identificador
oai:rdu.unc.edu.ar:11086/15877

id RDUUNC_11178542ce6df5668fb118ee51d3ae26
oai_identifier_str oai:rdu.unc.edu.ar:11086/15877
network_acronym_str RDUUNC
repository_id_str 2572
network_name_str Repositorio Digital Universitario (UNC)
spelling Relation-changing modal logicsFervari, Raúl AlbertoLógicas modalesOperadores de cambio de accesibilidadOperadores dinámicosPoder expresivoComplejidadDecidibilidadLógicas dinámicas epistémicasModal logicsRelation-changing operatorsDynamic operatorsBisimulationsExpressive powerComplexityDecidabilityDynamic epistemic logicsTesis (Doctor en Cs. de la Computación)--Universidad Nacional de Córdoba, Facultad de Matemática, Astronomía y Física, 2014.Fil: Fervari, Raúl Alberto. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física; Argentina.En esta tesis investigamos operadores modales dinámicos que pueden cambiar el modelo durante la evaluación de una fórmula. En particular, extendemos el lenguaje modal básico con modalidades que son capaces de invertir, borrar o agregar pares de elementos relacionados. Estudiamos la versión local de los operadores (es decir,la realización de modificaciones desde el punto de evaluación) y la versión global(cambiar arbitrariamente el modelo). Investigamos varias propiedades de los lenguajes introducidos, desde un punto de vista abstracto. En primer lugar, se introduce la semántica formal de los modificadores de modelo, e inmediatamente se introduce una noción de bisimulación. Las bisimulaciones son una herramienta importante para investigar el poder expresivo de los lenguajes introducidos en esta tesis. Se demostró que todas los lenguajes son incomparables entre sí en términos de poder expresivo (a excepción de los dos versiones de swap, aunque conjeturamos que también ́en son incomparables). Continuamos por investigar el comportamiento computacional de este tipo de operadores. En primer lugar, demostramos que el problema de satisfactibilidad para las versiones locales de las lógicas que cambian la relación que investigamos es indecidible. También demostramos que el problema de model checking es PSPACE-completo para las seis lógicas. Finalmente, investigamos model checking fijando el modelo y fijando la fórmula (problemas conocidos como complejidad de fórmula y complejidad del programa, respectivamente). Es posible también definir métodos para comprobar satisfactibilidad que no necesariamente terminan. Introducimos métodos de tableau para las lógicas que cambian las relaciones y demostramos que todos estos métodos son correctos y completos y mostramos algunos aplicaciones. En la última parte de la tesis, se discute un contexto concreto en el que pueden aplicarse las lógicas modales que cambian la relación: Lógicas Dinámicas Epistémicas (DEL, por las siglas en inglés). Definimos una lógica que cambia la relación capaz de codificar DEL, e investigamos su comportamiento computacional.In this thesis we study dynamic modal operators that can change the model during the evaluation of a formula. In particular, we extend the basic modal language with modalities that are able to swap, delete or add pairs of related elements of the domain. We call the resulting logics Relation-Changing Modal Logics. We study local version of the operators (performing modifications from the evaluation point) and global version (changing arbitrarily edges in the model). We investigate several properties of the given languages, from an abstract point of view. First, we introduce the formal semantics of the model modifiers, afterwards we introduce a notion of bisimulation. Bisimulations are an important tool to investigate the expressive power of the languages introduced in this thesis. We show that all the languages are incomparable among them in terms of expressive power (except for the two versions of swap, which we conjecture are also incomparable). We continue by investigating the computational behaviour of this kind of operators. First, we prove that the satisfiability problem for some of the relation-changing modal logics we investigate is undecidable. Then, we prove that the model checking problem is PSpace-complete for the six logics. Finally, we investigate model checking fixing the model and fixing the formula (problems known as formula and program complexity, respectively). We show that it is possible to define complete but non-terminating methods to check satisfiability. We introduce tableau methods for relation-changing modal logics and we prove that all these methods are sound and complete, and we show some applications. In the last part of the thesis, we discuss a concrete context in which we can apply relation-changing modal logics: Dynamic Epistemic Logics (DEL). We motivate the use of the kind of logics that we investigate in this new framework, and we introduce some examples of DEL. Finally, we define a new relation-changing modal logic that embeds DEL and we investigate its computational behaviour.Fil: Fervari, Raúl Alberto. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física; Argentina.Areces, Carlos Eduardo2014info:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_db06info:ar-repo/semantics/tesisDoctoralapplication/pdfhttp://hdl.handle.net/11086/15877enghttp://hdl.handle.net/11086/19804info:eu-repo/semantics/openAccessreponame:Repositorio Digital Universitario (UNC)instname:Universidad Nacional de Córdobainstacron:UNC2025-09-04T12:34:56Zoai:rdu.unc.edu.ar:11086/15877Institucionalhttps://rdu.unc.edu.ar/Universidad públicaNo correspondehttp://rdu.unc.edu.ar/oai/snrdoca.unc@gmail.comArgentinaNo correspondeNo correspondeNo correspondeopendoar:25722025-09-04 12:34:57.093Repositorio Digital Universitario (UNC) - Universidad Nacional de Córdobafalse
dc.title.none.fl_str_mv Relation-changing modal logics
title Relation-changing modal logics
spellingShingle Relation-changing modal logics
Fervari, Raúl Alberto
Lógicas modales
Operadores de cambio de accesibilidad
Operadores dinámicos
Poder expresivo
Complejidad
Decidibilidad
Lógicas dinámicas epistémicas
Modal logics
Relation-changing operators
Dynamic operators
Bisimulations
Expressive power
Complexity
Decidability
Dynamic epistemic logics
title_short Relation-changing modal logics
title_full Relation-changing modal logics
title_fullStr Relation-changing modal logics
title_full_unstemmed Relation-changing modal logics
title_sort Relation-changing modal logics
dc.creator.none.fl_str_mv Fervari, Raúl Alberto
author Fervari, Raúl Alberto
author_facet Fervari, Raúl Alberto
author_role author
dc.contributor.none.fl_str_mv Areces, Carlos Eduardo
dc.subject.none.fl_str_mv Lógicas modales
Operadores de cambio de accesibilidad
Operadores dinámicos
Poder expresivo
Complejidad
Decidibilidad
Lógicas dinámicas epistémicas
Modal logics
Relation-changing operators
Dynamic operators
Bisimulations
Expressive power
Complexity
Decidability
Dynamic epistemic logics
topic Lógicas modales
Operadores de cambio de accesibilidad
Operadores dinámicos
Poder expresivo
Complejidad
Decidibilidad
Lógicas dinámicas epistémicas
Modal logics
Relation-changing operators
Dynamic operators
Bisimulations
Expressive power
Complexity
Decidability
Dynamic epistemic logics
dc.description.none.fl_txt_mv Tesis (Doctor en Cs. de la Computación)--Universidad Nacional de Córdoba, Facultad de Matemática, Astronomía y Física, 2014.
Fil: Fervari, Raúl Alberto. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física; Argentina.
En esta tesis investigamos operadores modales dinámicos que pueden cambiar el modelo durante la evaluación de una fórmula. En particular, extendemos el lenguaje modal básico con modalidades que son capaces de invertir, borrar o agregar pares de elementos relacionados. Estudiamos la versión local de los operadores (es decir,la realización de modificaciones desde el punto de evaluación) y la versión global(cambiar arbitrariamente el modelo). Investigamos varias propiedades de los lenguajes introducidos, desde un punto de vista abstracto. En primer lugar, se introduce la semántica formal de los modificadores de modelo, e inmediatamente se introduce una noción de bisimulación. Las bisimulaciones son una herramienta importante para investigar el poder expresivo de los lenguajes introducidos en esta tesis. Se demostró que todas los lenguajes son incomparables entre sí en términos de poder expresivo (a excepción de los dos versiones de swap, aunque conjeturamos que también ́en son incomparables). Continuamos por investigar el comportamiento computacional de este tipo de operadores. En primer lugar, demostramos que el problema de satisfactibilidad para las versiones locales de las lógicas que cambian la relación que investigamos es indecidible. También demostramos que el problema de model checking es PSPACE-completo para las seis lógicas. Finalmente, investigamos model checking fijando el modelo y fijando la fórmula (problemas conocidos como complejidad de fórmula y complejidad del programa, respectivamente). Es posible también definir métodos para comprobar satisfactibilidad que no necesariamente terminan. Introducimos métodos de tableau para las lógicas que cambian las relaciones y demostramos que todos estos métodos son correctos y completos y mostramos algunos aplicaciones. En la última parte de la tesis, se discute un contexto concreto en el que pueden aplicarse las lógicas modales que cambian la relación: Lógicas Dinámicas Epistémicas (DEL, por las siglas en inglés). Definimos una lógica que cambia la relación capaz de codificar DEL, e investigamos su comportamiento computacional.
In this thesis we study dynamic modal operators that can change the model during the evaluation of a formula. In particular, we extend the basic modal language with modalities that are able to swap, delete or add pairs of related elements of the domain. We call the resulting logics Relation-Changing Modal Logics. We study local version of the operators (performing modifications from the evaluation point) and global version (changing arbitrarily edges in the model). We investigate several properties of the given languages, from an abstract point of view. First, we introduce the formal semantics of the model modifiers, afterwards we introduce a notion of bisimulation. Bisimulations are an important tool to investigate the expressive power of the languages introduced in this thesis. We show that all the languages are incomparable among them in terms of expressive power (except for the two versions of swap, which we conjecture are also incomparable). We continue by investigating the computational behaviour of this kind of operators. First, we prove that the satisfiability problem for some of the relation-changing modal logics we investigate is undecidable. Then, we prove that the model checking problem is PSpace-complete for the six logics. Finally, we investigate model checking fixing the model and fixing the formula (problems known as formula and program complexity, respectively). We show that it is possible to define complete but non-terminating methods to check satisfiability. We introduce tableau methods for relation-changing modal logics and we prove that all these methods are sound and complete, and we show some applications. In the last part of the thesis, we discuss a concrete context in which we can apply relation-changing modal logics: Dynamic Epistemic Logics (DEL). We motivate the use of the kind of logics that we investigate in this new framework, and we introduce some examples of DEL. Finally, we define a new relation-changing modal logic that embeds DEL and we investigate its computational behaviour.
Fil: Fervari, Raúl Alberto. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física; Argentina.
description Tesis (Doctor en Cs. de la Computación)--Universidad Nacional de Córdoba, Facultad de Matemática, Astronomía y Física, 2014.
publishDate 2014
dc.date.none.fl_str_mv 2014
dc.type.none.fl_str_mv info:eu-repo/semantics/doctoralThesis
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_db06
info:ar-repo/semantics/tesisDoctoral
format doctoralThesis
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11086/15877
url http://hdl.handle.net/11086/15877
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv http://hdl.handle.net/11086/19804
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositorio Digital Universitario (UNC)
instname:Universidad Nacional de Córdoba
instacron:UNC
reponame_str Repositorio Digital Universitario (UNC)
collection Repositorio Digital Universitario (UNC)
instname_str Universidad Nacional de Córdoba
instacron_str UNC
institution UNC
repository.name.fl_str_mv Repositorio Digital Universitario (UNC) - Universidad Nacional de Córdoba
repository.mail.fl_str_mv oca.unc@gmail.com
_version_ 1842349687438311424
score 13.13397