Forecasting one day stock returns in Latin American markets: a horserace

Autores
Sampron Noel, Alfredo Ignacio
Año de publicación
2025
Idioma
inglés
Tipo de recurso
tesis de maestría
Estado
versión corregida
Colaborador/a o director/a de tesis
García Cicco, Javier
Descripción
Fil: Sampron Noel, Alfredo Ignacio. Universidad de San Andrés. Departamento de Economía; Argentina.
We investigate the predictive power of Generalized Autoregressive Conditional Heteroskedasticity (GARCH), Vector Autoregression (VAR), and Hidden Markov Models (HMM) for forecasting stock returns in Argentina, Brazil, and Mexico. Our research extends prior work by considering the impact of volatility and foreign exchange (FX) variations, including the implicit exchange rate between American Depository Receipts (ADRs) and local stock prices, particularly relevant for Argentina's capital controls. We address three key questions: which model offers superior predictive accuracy, whether incorporating exchange rates enhances predictive power, and which return denomination (local currency or USD) is easier to predict. Findings reveal that model rankings remain consistent across local currency and USD-denominated assets. Broad market indices are best captured by VAR models. Our results align with the finding that more sophisticated models tend to outperform benchmarks, yet performance varies significantly.
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/4.0/
Repositorio
Repositorio Digital San Andrés (UdeSa)
Institución
Universidad de San Andrés
OAI Identificador
oai:repositorio.udesa.edu.ar:10908/25356

id RDUDESA_e87c95d1bb19e0c4ea370d4e1bc2c3cb
oai_identifier_str oai:repositorio.udesa.edu.ar:10908/25356
network_acronym_str RDUDESA
repository_id_str 2363
network_name_str Repositorio Digital San Andrés (UdeSa)
spelling Forecasting one day stock returns in Latin American markets: a horseraceSampron Noel, Alfredo IgnacioFil: Sampron Noel, Alfredo Ignacio. Universidad de San Andrés. Departamento de Economía; Argentina.We investigate the predictive power of Generalized Autoregressive Conditional Heteroskedasticity (GARCH), Vector Autoregression (VAR), and Hidden Markov Models (HMM) for forecasting stock returns in Argentina, Brazil, and Mexico. Our research extends prior work by considering the impact of volatility and foreign exchange (FX) variations, including the implicit exchange rate between American Depository Receipts (ADRs) and local stock prices, particularly relevant for Argentina's capital controls. We address three key questions: which model offers superior predictive accuracy, whether incorporating exchange rates enhances predictive power, and which return denomination (local currency or USD) is easier to predict. Findings reveal that model rankings remain consistent across local currency and USD-denominated assets. Broad market indices are best captured by VAR models. Our results align with the finding that more sophisticated models tend to outperform benchmarks, yet performance varies significantly.Universidad de San Andrés. Departamento de EconomíaGarcía Cicco, Javier2025-06-24T17:51:19Z2025-06-24T17:51:19Z2025-06Tesisinfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/updatedVersionhttp://purl.org/coar/resource_type/c_bdccinfo:ar-repo/semantics/tesisDeMaestriaapplication/pdfapplication/pdfSampron Noel, A. I. (2025). Forecasting one day stock returns in Latin American markets: a horserace. [Tesis de maestría, Universidad de San Andrés. Departamento de Economía]. Repositorio Digital San Andrés. https://repositorio.udesa.edu.ar/handle/10908/25356https://repositorio.udesa.edu.ar/handle/10908/25356enginfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/reponame:Repositorio Digital San Andrés (UdeSa)instname:Universidad de San Andrés2025-11-27T10:18:56Zoai:repositorio.udesa.edu.ar:10908/25356instacron:Universidad de San AndrésInstitucionalhttp://repositorio.udesa.edu.ar/jspui/Universidad privadaNo correspondehttp://repositorio.udesa.edu.ar/oai/requestmsanroman@udesa.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:23632025-11-27 10:18:57.369Repositorio Digital San Andrés (UdeSa) - Universidad de San Andrésfalse
dc.title.none.fl_str_mv Forecasting one day stock returns in Latin American markets: a horserace
title Forecasting one day stock returns in Latin American markets: a horserace
spellingShingle Forecasting one day stock returns in Latin American markets: a horserace
Sampron Noel, Alfredo Ignacio
title_short Forecasting one day stock returns in Latin American markets: a horserace
title_full Forecasting one day stock returns in Latin American markets: a horserace
title_fullStr Forecasting one day stock returns in Latin American markets: a horserace
title_full_unstemmed Forecasting one day stock returns in Latin American markets: a horserace
title_sort Forecasting one day stock returns in Latin American markets: a horserace
dc.creator.none.fl_str_mv Sampron Noel, Alfredo Ignacio
author Sampron Noel, Alfredo Ignacio
author_facet Sampron Noel, Alfredo Ignacio
author_role author
dc.contributor.none.fl_str_mv García Cicco, Javier
dc.description.none.fl_txt_mv Fil: Sampron Noel, Alfredo Ignacio. Universidad de San Andrés. Departamento de Economía; Argentina.
We investigate the predictive power of Generalized Autoregressive Conditional Heteroskedasticity (GARCH), Vector Autoregression (VAR), and Hidden Markov Models (HMM) for forecasting stock returns in Argentina, Brazil, and Mexico. Our research extends prior work by considering the impact of volatility and foreign exchange (FX) variations, including the implicit exchange rate between American Depository Receipts (ADRs) and local stock prices, particularly relevant for Argentina's capital controls. We address three key questions: which model offers superior predictive accuracy, whether incorporating exchange rates enhances predictive power, and which return denomination (local currency or USD) is easier to predict. Findings reveal that model rankings remain consistent across local currency and USD-denominated assets. Broad market indices are best captured by VAR models. Our results align with the finding that more sophisticated models tend to outperform benchmarks, yet performance varies significantly.
description Fil: Sampron Noel, Alfredo Ignacio. Universidad de San Andrés. Departamento de Economía; Argentina.
publishDate 2025
dc.date.none.fl_str_mv 2025-06-24T17:51:19Z
2025-06-24T17:51:19Z
2025-06
dc.type.none.fl_str_mv Tesis
info:eu-repo/semantics/masterThesis
info:eu-repo/semantics/updatedVersion
http://purl.org/coar/resource_type/c_bdcc
info:ar-repo/semantics/tesisDeMaestria
format masterThesis
status_str updatedVersion
dc.identifier.none.fl_str_mv Sampron Noel, A. I. (2025). Forecasting one day stock returns in Latin American markets: a horserace. [Tesis de maestría, Universidad de San Andrés. Departamento de Economía]. Repositorio Digital San Andrés. https://repositorio.udesa.edu.ar/handle/10908/25356
https://repositorio.udesa.edu.ar/handle/10908/25356
identifier_str_mv Sampron Noel, A. I. (2025). Forecasting one day stock returns in Latin American markets: a horserace. [Tesis de maestría, Universidad de San Andrés. Departamento de Economía]. Repositorio Digital San Andrés. https://repositorio.udesa.edu.ar/handle/10908/25356
url https://repositorio.udesa.edu.ar/handle/10908/25356
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Universidad de San Andrés. Departamento de Economía
publisher.none.fl_str_mv Universidad de San Andrés. Departamento de Economía
dc.source.none.fl_str_mv reponame:Repositorio Digital San Andrés (UdeSa)
instname:Universidad de San Andrés
reponame_str Repositorio Digital San Andrés (UdeSa)
collection Repositorio Digital San Andrés (UdeSa)
instname_str Universidad de San Andrés
repository.name.fl_str_mv Repositorio Digital San Andrés (UdeSa) - Universidad de San Andrés
repository.mail.fl_str_mv msanroman@udesa.edu.ar
_version_ 1849951559997194241
score 12.50043