Forecasting one day stock returns in Latin American markets: a horserace
- Autores
- Sampron Noel, Alfredo Ignacio
- Año de publicación
- 2025
- Idioma
- inglés
- Tipo de recurso
- tesis de maestría
- Estado
- versión corregida
- Colaborador/a o director/a de tesis
- García Cicco, Javier
- Descripción
- Fil: Sampron Noel, Alfredo Ignacio. Universidad de San Andrés. Departamento de Economía; Argentina.
We investigate the predictive power of Generalized Autoregressive Conditional Heteroskedasticity (GARCH), Vector Autoregression (VAR), and Hidden Markov Models (HMM) for forecasting stock returns in Argentina, Brazil, and Mexico. Our research extends prior work by considering the impact of volatility and foreign exchange (FX) variations, including the implicit exchange rate between American Depository Receipts (ADRs) and local stock prices, particularly relevant for Argentina's capital controls. We address three key questions: which model offers superior predictive accuracy, whether incorporating exchange rates enhances predictive power, and which return denomination (local currency or USD) is easier to predict. Findings reveal that model rankings remain consistent across local currency and USD-denominated assets. Broad market indices are best captured by VAR models. Our results align with the finding that more sophisticated models tend to outperform benchmarks, yet performance varies significantly. - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/4.0/
- Repositorio
.jpg)
- Institución
- Universidad de San Andrés
- OAI Identificador
- oai:repositorio.udesa.edu.ar:10908/25356
Ver los metadatos del registro completo
| id |
RDUDESA_e87c95d1bb19e0c4ea370d4e1bc2c3cb |
|---|---|
| oai_identifier_str |
oai:repositorio.udesa.edu.ar:10908/25356 |
| network_acronym_str |
RDUDESA |
| repository_id_str |
2363 |
| network_name_str |
Repositorio Digital San Andrés (UdeSa) |
| spelling |
Forecasting one day stock returns in Latin American markets: a horseraceSampron Noel, Alfredo IgnacioFil: Sampron Noel, Alfredo Ignacio. Universidad de San Andrés. Departamento de Economía; Argentina.We investigate the predictive power of Generalized Autoregressive Conditional Heteroskedasticity (GARCH), Vector Autoregression (VAR), and Hidden Markov Models (HMM) for forecasting stock returns in Argentina, Brazil, and Mexico. Our research extends prior work by considering the impact of volatility and foreign exchange (FX) variations, including the implicit exchange rate between American Depository Receipts (ADRs) and local stock prices, particularly relevant for Argentina's capital controls. We address three key questions: which model offers superior predictive accuracy, whether incorporating exchange rates enhances predictive power, and which return denomination (local currency or USD) is easier to predict. Findings reveal that model rankings remain consistent across local currency and USD-denominated assets. Broad market indices are best captured by VAR models. Our results align with the finding that more sophisticated models tend to outperform benchmarks, yet performance varies significantly.Universidad de San Andrés. Departamento de EconomíaGarcía Cicco, Javier2025-06-24T17:51:19Z2025-06-24T17:51:19Z2025-06Tesisinfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/updatedVersionhttp://purl.org/coar/resource_type/c_bdccinfo:ar-repo/semantics/tesisDeMaestriaapplication/pdfapplication/pdfSampron Noel, A. I. (2025). Forecasting one day stock returns in Latin American markets: a horserace. [Tesis de maestría, Universidad de San Andrés. Departamento de Economía]. Repositorio Digital San Andrés. https://repositorio.udesa.edu.ar/handle/10908/25356https://repositorio.udesa.edu.ar/handle/10908/25356enginfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/reponame:Repositorio Digital San Andrés (UdeSa)instname:Universidad de San Andrés2025-11-27T10:18:56Zoai:repositorio.udesa.edu.ar:10908/25356instacron:Universidad de San AndrésInstitucionalhttp://repositorio.udesa.edu.ar/jspui/Universidad privadaNo correspondehttp://repositorio.udesa.edu.ar/oai/requestmsanroman@udesa.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:23632025-11-27 10:18:57.369Repositorio Digital San Andrés (UdeSa) - Universidad de San Andrésfalse |
| dc.title.none.fl_str_mv |
Forecasting one day stock returns in Latin American markets: a horserace |
| title |
Forecasting one day stock returns in Latin American markets: a horserace |
| spellingShingle |
Forecasting one day stock returns in Latin American markets: a horserace Sampron Noel, Alfredo Ignacio |
| title_short |
Forecasting one day stock returns in Latin American markets: a horserace |
| title_full |
Forecasting one day stock returns in Latin American markets: a horserace |
| title_fullStr |
Forecasting one day stock returns in Latin American markets: a horserace |
| title_full_unstemmed |
Forecasting one day stock returns in Latin American markets: a horserace |
| title_sort |
Forecasting one day stock returns in Latin American markets: a horserace |
| dc.creator.none.fl_str_mv |
Sampron Noel, Alfredo Ignacio |
| author |
Sampron Noel, Alfredo Ignacio |
| author_facet |
Sampron Noel, Alfredo Ignacio |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
García Cicco, Javier |
| dc.description.none.fl_txt_mv |
Fil: Sampron Noel, Alfredo Ignacio. Universidad de San Andrés. Departamento de Economía; Argentina. We investigate the predictive power of Generalized Autoregressive Conditional Heteroskedasticity (GARCH), Vector Autoregression (VAR), and Hidden Markov Models (HMM) for forecasting stock returns in Argentina, Brazil, and Mexico. Our research extends prior work by considering the impact of volatility and foreign exchange (FX) variations, including the implicit exchange rate between American Depository Receipts (ADRs) and local stock prices, particularly relevant for Argentina's capital controls. We address three key questions: which model offers superior predictive accuracy, whether incorporating exchange rates enhances predictive power, and which return denomination (local currency or USD) is easier to predict. Findings reveal that model rankings remain consistent across local currency and USD-denominated assets. Broad market indices are best captured by VAR models. Our results align with the finding that more sophisticated models tend to outperform benchmarks, yet performance varies significantly. |
| description |
Fil: Sampron Noel, Alfredo Ignacio. Universidad de San Andrés. Departamento de Economía; Argentina. |
| publishDate |
2025 |
| dc.date.none.fl_str_mv |
2025-06-24T17:51:19Z 2025-06-24T17:51:19Z 2025-06 |
| dc.type.none.fl_str_mv |
Tesis info:eu-repo/semantics/masterThesis info:eu-repo/semantics/updatedVersion http://purl.org/coar/resource_type/c_bdcc info:ar-repo/semantics/tesisDeMaestria |
| format |
masterThesis |
| status_str |
updatedVersion |
| dc.identifier.none.fl_str_mv |
Sampron Noel, A. I. (2025). Forecasting one day stock returns in Latin American markets: a horserace. [Tesis de maestría, Universidad de San Andrés. Departamento de Economía]. Repositorio Digital San Andrés. https://repositorio.udesa.edu.ar/handle/10908/25356 https://repositorio.udesa.edu.ar/handle/10908/25356 |
| identifier_str_mv |
Sampron Noel, A. I. (2025). Forecasting one day stock returns in Latin American markets: a horserace. [Tesis de maestría, Universidad de San Andrés. Departamento de Economía]. Repositorio Digital San Andrés. https://repositorio.udesa.edu.ar/handle/10908/25356 |
| url |
https://repositorio.udesa.edu.ar/handle/10908/25356 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Universidad de San Andrés. Departamento de Economía |
| publisher.none.fl_str_mv |
Universidad de San Andrés. Departamento de Economía |
| dc.source.none.fl_str_mv |
reponame:Repositorio Digital San Andrés (UdeSa) instname:Universidad de San Andrés |
| reponame_str |
Repositorio Digital San Andrés (UdeSa) |
| collection |
Repositorio Digital San Andrés (UdeSa) |
| instname_str |
Universidad de San Andrés |
| repository.name.fl_str_mv |
Repositorio Digital San Andrés (UdeSa) - Universidad de San Andrés |
| repository.mail.fl_str_mv |
msanroman@udesa.edu.ar |
| _version_ |
1849951559997194241 |
| score |
12.50043 |