Capitalizing on market inefficiencies with neural networks: a case study in football betting
- Autores
- Arana, Joaquín Matías
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- tesis de grado
- Estado
- versión corregida
- Colaborador/a o director/a de tesis
- Gómez Seeber, Matías José
- Descripción
- Fil: Arana, Joaquín Matías. Universidad de San Andrés. Departamento de Economía; Argentina.
This paper introduces a machine learning approach for profiting from sports betting markets, which are non-arbitraged inefficient markets that present opportunities for exploiting discrepancies between bookmaker odds and actual probabilities of outcomes. I will develop a Neural Network Model that accurately forecasts the events of two different football competitions: The English Premier League and The Argentine’s First Division. A betting strategy based on Markow’s portfolio theory is developed to exploit inconsistencies and maximize yield over time. The findings suggest that machine learning algorithms, like the one presented in this study, could potentially enable consistent profitability in sports betting by identifying inefficiencies in bookmaker odds. - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/4.0/
- Repositorio
- Institución
- Universidad de San Andrés
- OAI Identificador
- oai:repositorio.udesa.edu.ar:10908/25214
Ver los metadatos del registro completo
id |
RDUDESA_c87b85816751504bd7f30f01f27d8f54 |
---|---|
oai_identifier_str |
oai:repositorio.udesa.edu.ar:10908/25214 |
network_acronym_str |
RDUDESA |
repository_id_str |
2363 |
network_name_str |
Repositorio Digital San Andrés (UdeSa) |
spelling |
Capitalizing on market inefficiencies with neural networks: a case study in football bettingArana, Joaquín MatíasFil: Arana, Joaquín Matías. Universidad de San Andrés. Departamento de Economía; Argentina.This paper introduces a machine learning approach for profiting from sports betting markets, which are non-arbitraged inefficient markets that present opportunities for exploiting discrepancies between bookmaker odds and actual probabilities of outcomes. I will develop a Neural Network Model that accurately forecasts the events of two different football competitions: The English Premier League and The Argentine’s First Division. A betting strategy based on Markow’s portfolio theory is developed to exploit inconsistencies and maximize yield over time. The findings suggest that machine learning algorithms, like the one presented in this study, could potentially enable consistent profitability in sports betting by identifying inefficiencies in bookmaker odds.Universidad de San Andrés. Departamento de EconomíaGómez Seeber, Matías José2025-05-22T15:31:13Z2025-05-22T15:31:13Z2024-12Tesisinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/updatedVersionhttp://purl.org/coar/resource_type/c_7a1finfo:ar-repo/semantics/tesisDeGradoapplication/pdfapplication/pdfArana, J. M. (2024). Capitalizing on market inefficiencies with neural networks: a case study in football betting. [Tesis de grado, Universidad de San Andrés. Departamento de Economía]. Repositorio Digital San Andrés. https://repositorio.udesa.edu.ar/handle/10908/25214https://repositorio.udesa.edu.ar/handle/10908/25214enginfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/reponame:Repositorio Digital San Andrés (UdeSa)instname:Universidad de San Andrés2025-09-29T14:29:49Zoai:repositorio.udesa.edu.ar:10908/25214instacron:Universidad de San AndrésInstitucionalhttp://repositorio.udesa.edu.ar/jspui/Universidad privadaNo correspondehttp://repositorio.udesa.edu.ar/oai/requestmsanroman@udesa.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:23632025-09-29 14:29:49.401Repositorio Digital San Andrés (UdeSa) - Universidad de San Andrésfalse |
dc.title.none.fl_str_mv |
Capitalizing on market inefficiencies with neural networks: a case study in football betting |
title |
Capitalizing on market inefficiencies with neural networks: a case study in football betting |
spellingShingle |
Capitalizing on market inefficiencies with neural networks: a case study in football betting Arana, Joaquín Matías |
title_short |
Capitalizing on market inefficiencies with neural networks: a case study in football betting |
title_full |
Capitalizing on market inefficiencies with neural networks: a case study in football betting |
title_fullStr |
Capitalizing on market inefficiencies with neural networks: a case study in football betting |
title_full_unstemmed |
Capitalizing on market inefficiencies with neural networks: a case study in football betting |
title_sort |
Capitalizing on market inefficiencies with neural networks: a case study in football betting |
dc.creator.none.fl_str_mv |
Arana, Joaquín Matías |
author |
Arana, Joaquín Matías |
author_facet |
Arana, Joaquín Matías |
author_role |
author |
dc.contributor.none.fl_str_mv |
Gómez Seeber, Matías José |
dc.description.none.fl_txt_mv |
Fil: Arana, Joaquín Matías. Universidad de San Andrés. Departamento de Economía; Argentina. This paper introduces a machine learning approach for profiting from sports betting markets, which are non-arbitraged inefficient markets that present opportunities for exploiting discrepancies between bookmaker odds and actual probabilities of outcomes. I will develop a Neural Network Model that accurately forecasts the events of two different football competitions: The English Premier League and The Argentine’s First Division. A betting strategy based on Markow’s portfolio theory is developed to exploit inconsistencies and maximize yield over time. The findings suggest that machine learning algorithms, like the one presented in this study, could potentially enable consistent profitability in sports betting by identifying inefficiencies in bookmaker odds. |
description |
Fil: Arana, Joaquín Matías. Universidad de San Andrés. Departamento de Economía; Argentina. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-12 2025-05-22T15:31:13Z 2025-05-22T15:31:13Z |
dc.type.none.fl_str_mv |
Tesis info:eu-repo/semantics/bachelorThesis info:eu-repo/semantics/updatedVersion http://purl.org/coar/resource_type/c_7a1f info:ar-repo/semantics/tesisDeGrado |
format |
bachelorThesis |
status_str |
updatedVersion |
dc.identifier.none.fl_str_mv |
Arana, J. M. (2024). Capitalizing on market inefficiencies with neural networks: a case study in football betting. [Tesis de grado, Universidad de San Andrés. Departamento de Economía]. Repositorio Digital San Andrés. https://repositorio.udesa.edu.ar/handle/10908/25214 https://repositorio.udesa.edu.ar/handle/10908/25214 |
identifier_str_mv |
Arana, J. M. (2024). Capitalizing on market inefficiencies with neural networks: a case study in football betting. [Tesis de grado, Universidad de San Andrés. Departamento de Economía]. Repositorio Digital San Andrés. https://repositorio.udesa.edu.ar/handle/10908/25214 |
url |
https://repositorio.udesa.edu.ar/handle/10908/25214 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Universidad de San Andrés. Departamento de Economía |
publisher.none.fl_str_mv |
Universidad de San Andrés. Departamento de Economía |
dc.source.none.fl_str_mv |
reponame:Repositorio Digital San Andrés (UdeSa) instname:Universidad de San Andrés |
reponame_str |
Repositorio Digital San Andrés (UdeSa) |
collection |
Repositorio Digital San Andrés (UdeSa) |
instname_str |
Universidad de San Andrés |
repository.name.fl_str_mv |
Repositorio Digital San Andrés (UdeSa) - Universidad de San Andrés |
repository.mail.fl_str_mv |
msanroman@udesa.edu.ar |
_version_ |
1844621882069876737 |
score |
12.559606 |