Intensive agriculture, a pesticide pathway to >100 m deep groundwater below dryland agriculture, Cordoba Pampas, Argentina
- Autores
- Cabrera, Agustín; Cendón, Dioni; Aparicio, Virginia Carolina; Currell, Matthew
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Groundwater pesticide pollution in shallow groundwater is a well-established global phenomenon. However, deep aquifers are widely thought to be naturally protected from such modern contaminants, by confining geological barriers and upwards hydraulic gradients. Here we document pervasive pesticide pollution in >100 m deep artesian wells in a sedimentary aquifer below dryland agriculture. The vertical distribution of key groundwater markers, including numbers and concentrations of pesticides, stable (δ18O & δ2H) and radioactive (3H & 14C) isotopes and ion concentrations were used to develop a conceptual model of pollutant transport to deep groundwater. Tritium, stable isotope and pesticide distributions in unconfined groundwater indicate that water table rise to <1 m below the surface (due to anthropogenic landscape modification and periodic flooding), has created a rapid pollutant ‘doorway’ to groundwater. Despite a lack of deep borehole pumping for irrigation, these rising water tables have permanently inverted previously upward hydraulic gradients towards the underlying semi-confined aquifer in some areas. Physical heterogeneities and/or leaky domestic boreholes then act as preferential transport avenues for surface pollutants to both unconfined and semi-confined groundwater. These pathways allow small aliquots of highly contaminated surface water and modern unconfined groundwater to mix with the pre-existing pre-modern deep groundwater, resulting in mixed isotopic signatures in deep wells (e.g., radiocarbon <5 pMC but detectable tritium) and detections of multiple synthetic pesticides in the deep aquifer, including AMPA at concentrations up to 4.93 µg/L and Metolachlor up to 0.015 µg/L. Our results demonstrate how semi-confined deep groundwaters may be contaminated by current agricultural techniques even where deep groundwater exploitation is limited. We urge measures to eliminate these pollutant pathways.
EEA Balcarce
Fil: Cabrera, Agustín. RMIT University. School of Engineering; Australia
Fil: Cendón, Dioni. Australia's Nuclear Science and Technology Organisation; Australia
Fil: Aparicio, Virginia Carolina. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina
Fil: Currell, Matthew. RMIT University. School of Engineering; Australia
Fil: Currell, Matthew J. ANSTO. Centro de distribución de Kirrawee; Australia - Fuente
- Journal of Hydrology 643 : 131989 (November 2024)
- Materia
-
Explotación Agrícola Intensiva
Polución del Agua
Polución de Aguas Subterráneas
Plaguicidas
Contaminación
Argentina
Intensive Farming
Water Pollution
Groundwater Pollution
Pesticides
Contamination - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Instituto Nacional de Tecnología Agropecuaria
- OAI Identificador
- oai:localhost:20.500.12123/19637
Ver los metadatos del registro completo
id |
INTADig_fb6a48a3a6885485b87ef70634e32040 |
---|---|
oai_identifier_str |
oai:localhost:20.500.12123/19637 |
network_acronym_str |
INTADig |
repository_id_str |
l |
network_name_str |
INTA Digital (INTA) |
spelling |
Intensive agriculture, a pesticide pathway to >100 m deep groundwater below dryland agriculture, Cordoba Pampas, ArgentinaCabrera, AgustínCendón, DioniAparicio, Virginia CarolinaCurrell, MatthewExplotación Agrícola IntensivaPolución del AguaPolución de Aguas SubterráneasPlaguicidasContaminaciónArgentinaIntensive FarmingWater PollutionGroundwater PollutionPesticidesContaminationGroundwater pesticide pollution in shallow groundwater is a well-established global phenomenon. However, deep aquifers are widely thought to be naturally protected from such modern contaminants, by confining geological barriers and upwards hydraulic gradients. Here we document pervasive pesticide pollution in >100 m deep artesian wells in a sedimentary aquifer below dryland agriculture. The vertical distribution of key groundwater markers, including numbers and concentrations of pesticides, stable (δ18O & δ2H) and radioactive (3H & 14C) isotopes and ion concentrations were used to develop a conceptual model of pollutant transport to deep groundwater. Tritium, stable isotope and pesticide distributions in unconfined groundwater indicate that water table rise to <1 m below the surface (due to anthropogenic landscape modification and periodic flooding), has created a rapid pollutant ‘doorway’ to groundwater. Despite a lack of deep borehole pumping for irrigation, these rising water tables have permanently inverted previously upward hydraulic gradients towards the underlying semi-confined aquifer in some areas. Physical heterogeneities and/or leaky domestic boreholes then act as preferential transport avenues for surface pollutants to both unconfined and semi-confined groundwater. These pathways allow small aliquots of highly contaminated surface water and modern unconfined groundwater to mix with the pre-existing pre-modern deep groundwater, resulting in mixed isotopic signatures in deep wells (e.g., radiocarbon <5 pMC but detectable tritium) and detections of multiple synthetic pesticides in the deep aquifer, including AMPA at concentrations up to 4.93 µg/L and Metolachlor up to 0.015 µg/L. Our results demonstrate how semi-confined deep groundwaters may be contaminated by current agricultural techniques even where deep groundwater exploitation is limited. We urge measures to eliminate these pollutant pathways.EEA BalcarceFil: Cabrera, Agustín. RMIT University. School of Engineering; AustraliaFil: Cendón, Dioni. Australia's Nuclear Science and Technology Organisation; AustraliaFil: Aparicio, Virginia Carolina. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; ArgentinaFil: Currell, Matthew. RMIT University. School of Engineering; AustraliaFil: Currell, Matthew J. ANSTO. Centro de distribución de Kirrawee; AustraliaElsevier2024-10-02T11:42:21Z2024-10-02T11:42:21Z2024-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12123/19637https://www.sciencedirect.com/science/article/pii/S00221694240138420022-16941879-2707https://doi.org/10.1016/j.jhydrol.2024.131989Journal of Hydrology 643 : 131989 (November 2024)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)2025-09-04T09:50:40Zoai:localhost:20.500.12123/19637instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-09-04 09:50:40.487INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse |
dc.title.none.fl_str_mv |
Intensive agriculture, a pesticide pathway to >100 m deep groundwater below dryland agriculture, Cordoba Pampas, Argentina |
title |
Intensive agriculture, a pesticide pathway to >100 m deep groundwater below dryland agriculture, Cordoba Pampas, Argentina |
spellingShingle |
Intensive agriculture, a pesticide pathway to >100 m deep groundwater below dryland agriculture, Cordoba Pampas, Argentina Cabrera, Agustín Explotación Agrícola Intensiva Polución del Agua Polución de Aguas Subterráneas Plaguicidas Contaminación Argentina Intensive Farming Water Pollution Groundwater Pollution Pesticides Contamination |
title_short |
Intensive agriculture, a pesticide pathway to >100 m deep groundwater below dryland agriculture, Cordoba Pampas, Argentina |
title_full |
Intensive agriculture, a pesticide pathway to >100 m deep groundwater below dryland agriculture, Cordoba Pampas, Argentina |
title_fullStr |
Intensive agriculture, a pesticide pathway to >100 m deep groundwater below dryland agriculture, Cordoba Pampas, Argentina |
title_full_unstemmed |
Intensive agriculture, a pesticide pathway to >100 m deep groundwater below dryland agriculture, Cordoba Pampas, Argentina |
title_sort |
Intensive agriculture, a pesticide pathway to >100 m deep groundwater below dryland agriculture, Cordoba Pampas, Argentina |
dc.creator.none.fl_str_mv |
Cabrera, Agustín Cendón, Dioni Aparicio, Virginia Carolina Currell, Matthew |
author |
Cabrera, Agustín |
author_facet |
Cabrera, Agustín Cendón, Dioni Aparicio, Virginia Carolina Currell, Matthew |
author_role |
author |
author2 |
Cendón, Dioni Aparicio, Virginia Carolina Currell, Matthew |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Explotación Agrícola Intensiva Polución del Agua Polución de Aguas Subterráneas Plaguicidas Contaminación Argentina Intensive Farming Water Pollution Groundwater Pollution Pesticides Contamination |
topic |
Explotación Agrícola Intensiva Polución del Agua Polución de Aguas Subterráneas Plaguicidas Contaminación Argentina Intensive Farming Water Pollution Groundwater Pollution Pesticides Contamination |
dc.description.none.fl_txt_mv |
Groundwater pesticide pollution in shallow groundwater is a well-established global phenomenon. However, deep aquifers are widely thought to be naturally protected from such modern contaminants, by confining geological barriers and upwards hydraulic gradients. Here we document pervasive pesticide pollution in >100 m deep artesian wells in a sedimentary aquifer below dryland agriculture. The vertical distribution of key groundwater markers, including numbers and concentrations of pesticides, stable (δ18O & δ2H) and radioactive (3H & 14C) isotopes and ion concentrations were used to develop a conceptual model of pollutant transport to deep groundwater. Tritium, stable isotope and pesticide distributions in unconfined groundwater indicate that water table rise to <1 m below the surface (due to anthropogenic landscape modification and periodic flooding), has created a rapid pollutant ‘doorway’ to groundwater. Despite a lack of deep borehole pumping for irrigation, these rising water tables have permanently inverted previously upward hydraulic gradients towards the underlying semi-confined aquifer in some areas. Physical heterogeneities and/or leaky domestic boreholes then act as preferential transport avenues for surface pollutants to both unconfined and semi-confined groundwater. These pathways allow small aliquots of highly contaminated surface water and modern unconfined groundwater to mix with the pre-existing pre-modern deep groundwater, resulting in mixed isotopic signatures in deep wells (e.g., radiocarbon <5 pMC but detectable tritium) and detections of multiple synthetic pesticides in the deep aquifer, including AMPA at concentrations up to 4.93 µg/L and Metolachlor up to 0.015 µg/L. Our results demonstrate how semi-confined deep groundwaters may be contaminated by current agricultural techniques even where deep groundwater exploitation is limited. We urge measures to eliminate these pollutant pathways. EEA Balcarce Fil: Cabrera, Agustín. RMIT University. School of Engineering; Australia Fil: Cendón, Dioni. Australia's Nuclear Science and Technology Organisation; Australia Fil: Aparicio, Virginia Carolina. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina Fil: Currell, Matthew. RMIT University. School of Engineering; Australia Fil: Currell, Matthew J. ANSTO. Centro de distribución de Kirrawee; Australia |
description |
Groundwater pesticide pollution in shallow groundwater is a well-established global phenomenon. However, deep aquifers are widely thought to be naturally protected from such modern contaminants, by confining geological barriers and upwards hydraulic gradients. Here we document pervasive pesticide pollution in >100 m deep artesian wells in a sedimentary aquifer below dryland agriculture. The vertical distribution of key groundwater markers, including numbers and concentrations of pesticides, stable (δ18O & δ2H) and radioactive (3H & 14C) isotopes and ion concentrations were used to develop a conceptual model of pollutant transport to deep groundwater. Tritium, stable isotope and pesticide distributions in unconfined groundwater indicate that water table rise to <1 m below the surface (due to anthropogenic landscape modification and periodic flooding), has created a rapid pollutant ‘doorway’ to groundwater. Despite a lack of deep borehole pumping for irrigation, these rising water tables have permanently inverted previously upward hydraulic gradients towards the underlying semi-confined aquifer in some areas. Physical heterogeneities and/or leaky domestic boreholes then act as preferential transport avenues for surface pollutants to both unconfined and semi-confined groundwater. These pathways allow small aliquots of highly contaminated surface water and modern unconfined groundwater to mix with the pre-existing pre-modern deep groundwater, resulting in mixed isotopic signatures in deep wells (e.g., radiocarbon <5 pMC but detectable tritium) and detections of multiple synthetic pesticides in the deep aquifer, including AMPA at concentrations up to 4.93 µg/L and Metolachlor up to 0.015 µg/L. Our results demonstrate how semi-confined deep groundwaters may be contaminated by current agricultural techniques even where deep groundwater exploitation is limited. We urge measures to eliminate these pollutant pathways. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-10-02T11:42:21Z 2024-10-02T11:42:21Z 2024-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12123/19637 https://www.sciencedirect.com/science/article/pii/S0022169424013842 0022-1694 1879-2707 https://doi.org/10.1016/j.jhydrol.2024.131989 |
url |
http://hdl.handle.net/20.500.12123/19637 https://www.sciencedirect.com/science/article/pii/S0022169424013842 https://doi.org/10.1016/j.jhydrol.2024.131989 |
identifier_str_mv |
0022-1694 1879-2707 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
Journal of Hydrology 643 : 131989 (November 2024) reponame:INTA Digital (INTA) instname:Instituto Nacional de Tecnología Agropecuaria |
reponame_str |
INTA Digital (INTA) |
collection |
INTA Digital (INTA) |
instname_str |
Instituto Nacional de Tecnología Agropecuaria |
repository.name.fl_str_mv |
INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria |
repository.mail.fl_str_mv |
tripaldi.nicolas@inta.gob.ar |
_version_ |
1842341428462616576 |
score |
12.623145 |