Coexistence of grasses and shrubs in Patagonian steppes. Norm or exception?

Autores
Biancari, Lucio; Oñatibia, Gastón Rafael; Gaitan, Juan Jose; Aguiar, Martín Roberto
Año de publicación
2023
Idioma
inglés
Tipo de recurso
artículo
Estado
versión aceptada
Descripción
Community ecology’s central challenge is to define and corroborate theoretical frameworks that predict -at least in general terms- the composition of communities. The predictive power of a theory based on interspecific interactions and ecological niches has been questioned (Lawton 1999; Hubbell 2001; Ricklefs 2008; but see Brooker &Callaway 2009). These authors also propose that part of the problem is that the composition of a given community, and therefore its species richness and diversity, iscontingent on different and varied local factors. Therefore, expanding the spatial scale to the regional level averages these “local” contingencies and increases the predictive power (Lawton 1999). Accordingly, it has been proposed that the global diagram of biomes distribution in relation to the main climate descriptors (i.e. average annual temperature and precipitation, MAT and MAP respectively) is a solid start for community ecology (Keddy 1994; Lawton 1999). But semiarid environments put a note of warning to this research program. It is notorious that within the range of -5 to 20 °C of MAT and from 150 to 1200 mm of MAP, the biomes are not unequivocally defined as it happens in the rest of the climates (Whittaker 1972). In this climatic envelope, grasslands, shrubby steppes, savannas, and spiny forests overlap their distribution ranges. In other words, there is uncertainty in predicting the basic community composition of life-forms. This vagueness syndrome in the proportion of woody and grass species has been named “the savanna problem” (Sarmiento 1984; Vazquez et al. 2010) to indicate the conundrum that two very different life-forms can coexist in anample range of ecological conditions (House et al. 2003). The existence of mixed communities such as savannas or grass-shrub steppes under semiarid climates has been the subject of several theories, empirical studies, and discussions. In general, the initial assumption was that the ecological differences in the water economy of woody and herbaceous species were large enough to work with avery simplified community model in which two types of plants interact -compete- (Walter 1971). Early models also included stress and disturbance regimes. Thus, grazing intensification in conjunction with very dry periods can change the relative abundance of woody and herbaceous species precluding coexistence (Walker et al. 1981). In this second type of models -competition plus grazing and extreme drought events-, the assumption was that these two life-forms also differed in their response to grazing (Eldridge et al. 2011; Venter et al. 2018). More recently, hypotheses about the existence of savannas have become more complex in terms of processes but also in spatial scales. They included different population responses among species within the same life-form ( Cipriotti & Aguiar 2010; Cipriotti et al. 2019) or patch dynamics (Meyer et al. 2009). Currently, the causes of coexistence and the great variability of relative coverage in mixed systems remain relevant but difficult to generalize (Jeltsch et al. 2000; House et al. 2003; Sankaran et al. 2004; Vazquez et al. 2010; Stevens et al. 2017; Venter et al. 2018). At the same time, it is necessary tocontinue collecting empirical data on the cover of woody and grass components over large geographical regions -sampling different environments and grazing management
Instituto de Suelos
Fil: Biancari, Lucio. Universidad de Buenos Aires. Facultad de Agronomía. Cátedra de Ecología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina
Fil: Oñatibia, Gastón R. Universidad de Buenos Aires, Facultad d Agronomía, Cátedra de Ecología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina
Fil: Gaitan, Juan Jose. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Suelos; Argentina. Universidad Nacional de Luján. Departamento de Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Aguiar, Martin Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina
Fuente
Journal of vegetation science 34 (1) : e13177. (First published: 08 February 2023)
Materia
Grazing Intensity
Plant Communities
Grasses
Shrubs
Intensidad de Pastoreo
Comunidades Vegetales
Gramineas
Arbustos
Precipitation Variation
Variación de la Precipitación
Región Patagónica
Nivel de accesibilidad
acceso restringido
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
INTA Digital (INTA)
Institución
Instituto Nacional de Tecnología Agropecuaria
OAI Identificador
oai:localhost:20.500.12123/14358

id INTADig_f9d46f0eaf7bf883f9d5020a86ac6fb2
oai_identifier_str oai:localhost:20.500.12123/14358
network_acronym_str INTADig
repository_id_str l
network_name_str INTA Digital (INTA)
spelling Coexistence of grasses and shrubs in Patagonian steppes. Norm or exception?Biancari, LucioOñatibia, Gastón RafaelGaitan, Juan JoseAguiar, Martín RobertoGrazing IntensityPlant CommunitiesGrassesShrubsIntensidad de PastoreoComunidades VegetalesGramineasArbustosPrecipitation VariationVariación de la PrecipitaciónRegión PatagónicaCommunity ecology’s central challenge is to define and corroborate theoretical frameworks that predict -at least in general terms- the composition of communities. The predictive power of a theory based on interspecific interactions and ecological niches has been questioned (Lawton 1999; Hubbell 2001; Ricklefs 2008; but see Brooker &Callaway 2009). These authors also propose that part of the problem is that the composition of a given community, and therefore its species richness and diversity, iscontingent on different and varied local factors. Therefore, expanding the spatial scale to the regional level averages these “local” contingencies and increases the predictive power (Lawton 1999). Accordingly, it has been proposed that the global diagram of biomes distribution in relation to the main climate descriptors (i.e. average annual temperature and precipitation, MAT and MAP respectively) is a solid start for community ecology (Keddy 1994; Lawton 1999). But semiarid environments put a note of warning to this research program. It is notorious that within the range of -5 to 20 °C of MAT and from 150 to 1200 mm of MAP, the biomes are not unequivocally defined as it happens in the rest of the climates (Whittaker 1972). In this climatic envelope, grasslands, shrubby steppes, savannas, and spiny forests overlap their distribution ranges. In other words, there is uncertainty in predicting the basic community composition of life-forms. This vagueness syndrome in the proportion of woody and grass species has been named “the savanna problem” (Sarmiento 1984; Vazquez et al. 2010) to indicate the conundrum that two very different life-forms can coexist in anample range of ecological conditions (House et al. 2003). The existence of mixed communities such as savannas or grass-shrub steppes under semiarid climates has been the subject of several theories, empirical studies, and discussions. In general, the initial assumption was that the ecological differences in the water economy of woody and herbaceous species were large enough to work with avery simplified community model in which two types of plants interact -compete- (Walter 1971). Early models also included stress and disturbance regimes. Thus, grazing intensification in conjunction with very dry periods can change the relative abundance of woody and herbaceous species precluding coexistence (Walker et al. 1981). In this second type of models -competition plus grazing and extreme drought events-, the assumption was that these two life-forms also differed in their response to grazing (Eldridge et al. 2011; Venter et al. 2018). More recently, hypotheses about the existence of savannas have become more complex in terms of processes but also in spatial scales. They included different population responses among species within the same life-form ( Cipriotti & Aguiar 2010; Cipriotti et al. 2019) or patch dynamics (Meyer et al. 2009). Currently, the causes of coexistence and the great variability of relative coverage in mixed systems remain relevant but difficult to generalize (Jeltsch et al. 2000; House et al. 2003; Sankaran et al. 2004; Vazquez et al. 2010; Stevens et al. 2017; Venter et al. 2018). At the same time, it is necessary tocontinue collecting empirical data on the cover of woody and grass components over large geographical regions -sampling different environments and grazing managementInstituto de SuelosFil: Biancari, Lucio. Universidad de Buenos Aires. Facultad de Agronomía. Cátedra de Ecología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; ArgentinaFil: Oñatibia, Gastón R. Universidad de Buenos Aires, Facultad d Agronomía, Cátedra de Ecología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; ArgentinaFil: Gaitan, Juan Jose. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Suelos; Argentina. Universidad Nacional de Luján. Departamento de Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Aguiar, Martin Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; ArgentinaWileyinfo:eu-repo/date/embargoEnd/2024-03-292023-03-29T15:45:19Z2023-03-29T15:45:19Z2023-02-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12123/14358https://onlinelibrary.wiley.com/doi/abs/10.1111/jvs.131771654-1103https://doi.org/10.1111/jvs.13177Journal of vegetation science 34 (1) : e13177. (First published: 08 February 2023)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repo/semantics/restrictedAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)2025-09-29T13:45:56Zoai:localhost:20.500.12123/14358instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-09-29 13:45:56.968INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse
dc.title.none.fl_str_mv Coexistence of grasses and shrubs in Patagonian steppes. Norm or exception?
title Coexistence of grasses and shrubs in Patagonian steppes. Norm or exception?
spellingShingle Coexistence of grasses and shrubs in Patagonian steppes. Norm or exception?
Biancari, Lucio
Grazing Intensity
Plant Communities
Grasses
Shrubs
Intensidad de Pastoreo
Comunidades Vegetales
Gramineas
Arbustos
Precipitation Variation
Variación de la Precipitación
Región Patagónica
title_short Coexistence of grasses and shrubs in Patagonian steppes. Norm or exception?
title_full Coexistence of grasses and shrubs in Patagonian steppes. Norm or exception?
title_fullStr Coexistence of grasses and shrubs in Patagonian steppes. Norm or exception?
title_full_unstemmed Coexistence of grasses and shrubs in Patagonian steppes. Norm or exception?
title_sort Coexistence of grasses and shrubs in Patagonian steppes. Norm or exception?
dc.creator.none.fl_str_mv Biancari, Lucio
Oñatibia, Gastón Rafael
Gaitan, Juan Jose
Aguiar, Martín Roberto
author Biancari, Lucio
author_facet Biancari, Lucio
Oñatibia, Gastón Rafael
Gaitan, Juan Jose
Aguiar, Martín Roberto
author_role author
author2 Oñatibia, Gastón Rafael
Gaitan, Juan Jose
Aguiar, Martín Roberto
author2_role author
author
author
dc.subject.none.fl_str_mv Grazing Intensity
Plant Communities
Grasses
Shrubs
Intensidad de Pastoreo
Comunidades Vegetales
Gramineas
Arbustos
Precipitation Variation
Variación de la Precipitación
Región Patagónica
topic Grazing Intensity
Plant Communities
Grasses
Shrubs
Intensidad de Pastoreo
Comunidades Vegetales
Gramineas
Arbustos
Precipitation Variation
Variación de la Precipitación
Región Patagónica
dc.description.none.fl_txt_mv Community ecology’s central challenge is to define and corroborate theoretical frameworks that predict -at least in general terms- the composition of communities. The predictive power of a theory based on interspecific interactions and ecological niches has been questioned (Lawton 1999; Hubbell 2001; Ricklefs 2008; but see Brooker &Callaway 2009). These authors also propose that part of the problem is that the composition of a given community, and therefore its species richness and diversity, iscontingent on different and varied local factors. Therefore, expanding the spatial scale to the regional level averages these “local” contingencies and increases the predictive power (Lawton 1999). Accordingly, it has been proposed that the global diagram of biomes distribution in relation to the main climate descriptors (i.e. average annual temperature and precipitation, MAT and MAP respectively) is a solid start for community ecology (Keddy 1994; Lawton 1999). But semiarid environments put a note of warning to this research program. It is notorious that within the range of -5 to 20 °C of MAT and from 150 to 1200 mm of MAP, the biomes are not unequivocally defined as it happens in the rest of the climates (Whittaker 1972). In this climatic envelope, grasslands, shrubby steppes, savannas, and spiny forests overlap their distribution ranges. In other words, there is uncertainty in predicting the basic community composition of life-forms. This vagueness syndrome in the proportion of woody and grass species has been named “the savanna problem” (Sarmiento 1984; Vazquez et al. 2010) to indicate the conundrum that two very different life-forms can coexist in anample range of ecological conditions (House et al. 2003). The existence of mixed communities such as savannas or grass-shrub steppes under semiarid climates has been the subject of several theories, empirical studies, and discussions. In general, the initial assumption was that the ecological differences in the water economy of woody and herbaceous species were large enough to work with avery simplified community model in which two types of plants interact -compete- (Walter 1971). Early models also included stress and disturbance regimes. Thus, grazing intensification in conjunction with very dry periods can change the relative abundance of woody and herbaceous species precluding coexistence (Walker et al. 1981). In this second type of models -competition plus grazing and extreme drought events-, the assumption was that these two life-forms also differed in their response to grazing (Eldridge et al. 2011; Venter et al. 2018). More recently, hypotheses about the existence of savannas have become more complex in terms of processes but also in spatial scales. They included different population responses among species within the same life-form ( Cipriotti & Aguiar 2010; Cipriotti et al. 2019) or patch dynamics (Meyer et al. 2009). Currently, the causes of coexistence and the great variability of relative coverage in mixed systems remain relevant but difficult to generalize (Jeltsch et al. 2000; House et al. 2003; Sankaran et al. 2004; Vazquez et al. 2010; Stevens et al. 2017; Venter et al. 2018). At the same time, it is necessary tocontinue collecting empirical data on the cover of woody and grass components over large geographical regions -sampling different environments and grazing management
Instituto de Suelos
Fil: Biancari, Lucio. Universidad de Buenos Aires. Facultad de Agronomía. Cátedra de Ecología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina
Fil: Oñatibia, Gastón R. Universidad de Buenos Aires, Facultad d Agronomía, Cátedra de Ecología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina
Fil: Gaitan, Juan Jose. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Suelos; Argentina. Universidad Nacional de Luján. Departamento de Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Aguiar, Martin Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina
description Community ecology’s central challenge is to define and corroborate theoretical frameworks that predict -at least in general terms- the composition of communities. The predictive power of a theory based on interspecific interactions and ecological niches has been questioned (Lawton 1999; Hubbell 2001; Ricklefs 2008; but see Brooker &Callaway 2009). These authors also propose that part of the problem is that the composition of a given community, and therefore its species richness and diversity, iscontingent on different and varied local factors. Therefore, expanding the spatial scale to the regional level averages these “local” contingencies and increases the predictive power (Lawton 1999). Accordingly, it has been proposed that the global diagram of biomes distribution in relation to the main climate descriptors (i.e. average annual temperature and precipitation, MAT and MAP respectively) is a solid start for community ecology (Keddy 1994; Lawton 1999). But semiarid environments put a note of warning to this research program. It is notorious that within the range of -5 to 20 °C of MAT and from 150 to 1200 mm of MAP, the biomes are not unequivocally defined as it happens in the rest of the climates (Whittaker 1972). In this climatic envelope, grasslands, shrubby steppes, savannas, and spiny forests overlap their distribution ranges. In other words, there is uncertainty in predicting the basic community composition of life-forms. This vagueness syndrome in the proportion of woody and grass species has been named “the savanna problem” (Sarmiento 1984; Vazquez et al. 2010) to indicate the conundrum that two very different life-forms can coexist in anample range of ecological conditions (House et al. 2003). The existence of mixed communities such as savannas or grass-shrub steppes under semiarid climates has been the subject of several theories, empirical studies, and discussions. In general, the initial assumption was that the ecological differences in the water economy of woody and herbaceous species were large enough to work with avery simplified community model in which two types of plants interact -compete- (Walter 1971). Early models also included stress and disturbance regimes. Thus, grazing intensification in conjunction with very dry periods can change the relative abundance of woody and herbaceous species precluding coexistence (Walker et al. 1981). In this second type of models -competition plus grazing and extreme drought events-, the assumption was that these two life-forms also differed in their response to grazing (Eldridge et al. 2011; Venter et al. 2018). More recently, hypotheses about the existence of savannas have become more complex in terms of processes but also in spatial scales. They included different population responses among species within the same life-form ( Cipriotti & Aguiar 2010; Cipriotti et al. 2019) or patch dynamics (Meyer et al. 2009). Currently, the causes of coexistence and the great variability of relative coverage in mixed systems remain relevant but difficult to generalize (Jeltsch et al. 2000; House et al. 2003; Sankaran et al. 2004; Vazquez et al. 2010; Stevens et al. 2017; Venter et al. 2018). At the same time, it is necessary tocontinue collecting empirical data on the cover of woody and grass components over large geographical regions -sampling different environments and grazing management
publishDate 2023
dc.date.none.fl_str_mv 2023-03-29T15:45:19Z
2023-03-29T15:45:19Z
2023-02-08
info:eu-repo/date/embargoEnd/2024-03-29
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/acceptedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str acceptedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12123/14358
https://onlinelibrary.wiley.com/doi/abs/10.1111/jvs.13177
1654-1103
https://doi.org/10.1111/jvs.13177
url http://hdl.handle.net/20.500.12123/14358
https://onlinelibrary.wiley.com/doi/abs/10.1111/jvs.13177
https://doi.org/10.1111/jvs.13177
identifier_str_mv 1654-1103
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv restrictedAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Wiley
publisher.none.fl_str_mv Wiley
dc.source.none.fl_str_mv Journal of vegetation science 34 (1) : e13177. (First published: 08 February 2023)
reponame:INTA Digital (INTA)
instname:Instituto Nacional de Tecnología Agropecuaria
reponame_str INTA Digital (INTA)
collection INTA Digital (INTA)
instname_str Instituto Nacional de Tecnología Agropecuaria
repository.name.fl_str_mv INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria
repository.mail.fl_str_mv tripaldi.nicolas@inta.gob.ar
_version_ 1844619175356530688
score 12.559606