Does the photo-thermal environment limit post-flowering maize growth?

Autores
Bonelli, Lucas Emmanuel; Cerrudo, Aníbal Alejandro; Olmedo Pico, Belen; Di Matteo, Javier. A; Monzon, Juan Pablo; Rizzalli, Roberto Héctor; Andrade, Fernando Hector
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
After canopy closure and in the absence of limitations by water or nutrient availability, crop growth rate (CGR) of maize (Zea mays L.) is ultimately constrained by the daily incident radiation and temperature of the environment. Sustaining maximal canopy photosynthetic capacity after-flowering is, then, a necessary but not a sufficient condition to increase maize dry-matter production. The aim of the present study was to determine the extent of the photo-thermal environment limitation to CGR during the post-flowering period in current maize crops. Dynamic of CGR was studied in two well-irrigated and nourished maize field experiments (Exp. 1 and Exp. 2 for 2010−11 and 2011−12 cropping seasons, respectively) on conventional crops (i.e. full-season hybrid planted early in the season) at Balcarce, Argentina (37° 45’ S, 58° 18’ W; 130 m a.s.l.). Two independent methods were performed to benchmark the CGR of these conventional crops during the post-flowering period: i) empirical CGR values obtained under the same weather conditions from younger maize crops, and ii) theoretically estimated potential CGR, obtained as a function of daily incident radiation and potential radiation use-efficiency (RUE). Conventional crops reached the maximal CGR near flowering in mid-January, being 51.2 g m−2 d−1 and 58.8 g m−2 d−1 in Exp. 1 and Exp. 2, respectively. Afterwards, CGR decreased progressively towards crops maturity late in March. Estimates, from either the empirical or the theoretical method, indicated that although attainable-CGR decreases progressively towards the end of the cropping season, it sustains higher values than those achieved by conventional crops after flowering. Differences in attainable vs. actual-CGR was almost exclusively attributable to RUE, which, in turn, could not be explained solely by the post-flowering foliar nitrogen withdrawal. Differences between actual (1987 g m−2 in Exp. 1 and 1614 g m−2 in Exp. 2) and potential post-flowering dry-matter production defined gaps that were in the range 18.2%–47.8%. From these results, it can be concluded that the photo-thermal environment is not, at least so far, the limiting factor to the post-flowering maize growth. Further research is needed, however, to analyze the viability of increasing potential yield of maize through the closure of these estimated gaps.
EEA Balcarce
Fil: Bonelli, Lucas Emmanuel. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Cerrudo, Aníbal Alejandro. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina.
Fil: Olmedo Pico, Lía Belén. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Investigación Animal del Chaco Semiárido; Argentina. Purdue University. Departament of Agronomy; Estados Unidos
Fil: Di Matteo, Javier. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina.
Fil: Monzon, Juan Pablo. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Rizzalli, Roberto Héctor. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina.
Fil: Andrade, Fernando Héctor. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina. . Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Argentina
Fuente
Field Crops Research 252 : 107805 (2020)
Materia
Maíz
Floración
Crecimiento
Radiación Térmica
Rendimiento de Cultivos
Maize
Flowering
Growth
Thermal Radiation
Crop Yield
Nivel de accesibilidad
acceso restringido
Condiciones de uso
Repositorio
INTA Digital (INTA)
Institución
Instituto Nacional de Tecnología Agropecuaria
OAI Identificador
oai:localhost:20.500.12123/7386

id INTADig_e7611b96430df5e73a2ad64b8aa51df6
oai_identifier_str oai:localhost:20.500.12123/7386
network_acronym_str INTADig
repository_id_str l
network_name_str INTA Digital (INTA)
spelling Does the photo-thermal environment limit post-flowering maize growth?Bonelli, Lucas EmmanuelCerrudo, Aníbal AlejandroOlmedo Pico, BelenDi Matteo, Javier. AMonzon, Juan PabloRizzalli, Roberto HéctorAndrade, Fernando HectorMaízFloraciónCrecimientoRadiación TérmicaRendimiento de CultivosMaizeFloweringGrowthThermal RadiationCrop YieldAfter canopy closure and in the absence of limitations by water or nutrient availability, crop growth rate (CGR) of maize (Zea mays L.) is ultimately constrained by the daily incident radiation and temperature of the environment. Sustaining maximal canopy photosynthetic capacity after-flowering is, then, a necessary but not a sufficient condition to increase maize dry-matter production. The aim of the present study was to determine the extent of the photo-thermal environment limitation to CGR during the post-flowering period in current maize crops. Dynamic of CGR was studied in two well-irrigated and nourished maize field experiments (Exp. 1 and Exp. 2 for 2010−11 and 2011−12 cropping seasons, respectively) on conventional crops (i.e. full-season hybrid planted early in the season) at Balcarce, Argentina (37° 45’ S, 58° 18’ W; 130 m a.s.l.). Two independent methods were performed to benchmark the CGR of these conventional crops during the post-flowering period: i) empirical CGR values obtained under the same weather conditions from younger maize crops, and ii) theoretically estimated potential CGR, obtained as a function of daily incident radiation and potential radiation use-efficiency (RUE). Conventional crops reached the maximal CGR near flowering in mid-January, being 51.2 g m−2 d−1 and 58.8 g m−2 d−1 in Exp. 1 and Exp. 2, respectively. Afterwards, CGR decreased progressively towards crops maturity late in March. Estimates, from either the empirical or the theoretical method, indicated that although attainable-CGR decreases progressively towards the end of the cropping season, it sustains higher values than those achieved by conventional crops after flowering. Differences in attainable vs. actual-CGR was almost exclusively attributable to RUE, which, in turn, could not be explained solely by the post-flowering foliar nitrogen withdrawal. Differences between actual (1987 g m−2 in Exp. 1 and 1614 g m−2 in Exp. 2) and potential post-flowering dry-matter production defined gaps that were in the range 18.2%–47.8%. From these results, it can be concluded that the photo-thermal environment is not, at least so far, the limiting factor to the post-flowering maize growth. Further research is needed, however, to analyze the viability of increasing potential yield of maize through the closure of these estimated gaps.EEA BalcarceFil: Bonelli, Lucas Emmanuel. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Cerrudo, Aníbal Alejandro. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina.Fil: Olmedo Pico, Lía Belén. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Investigación Animal del Chaco Semiárido; Argentina. Purdue University. Departament of Agronomy; Estados UnidosFil: Di Matteo, Javier. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina.Fil: Monzon, Juan Pablo. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Rizzalli, Roberto Héctor. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina.Fil: Andrade, Fernando Héctor. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina. . Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); ArgentinaElsevier2020-06-09T18:33:40Z2020-06-09T18:33:40Z2020-07-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12123/7386https://www.sciencedirect.com/science/article/abs/pii/S03784290193200760378-4290https://doi.org/10.1016/j.fcr.2020.107805Field Crops Research 252 : 107805 (2020)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repo/semantics/restrictedAccess2025-09-29T13:44:57Zoai:localhost:20.500.12123/7386instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-09-29 13:44:57.808INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse
dc.title.none.fl_str_mv Does the photo-thermal environment limit post-flowering maize growth?
title Does the photo-thermal environment limit post-flowering maize growth?
spellingShingle Does the photo-thermal environment limit post-flowering maize growth?
Bonelli, Lucas Emmanuel
Maíz
Floración
Crecimiento
Radiación Térmica
Rendimiento de Cultivos
Maize
Flowering
Growth
Thermal Radiation
Crop Yield
title_short Does the photo-thermal environment limit post-flowering maize growth?
title_full Does the photo-thermal environment limit post-flowering maize growth?
title_fullStr Does the photo-thermal environment limit post-flowering maize growth?
title_full_unstemmed Does the photo-thermal environment limit post-flowering maize growth?
title_sort Does the photo-thermal environment limit post-flowering maize growth?
dc.creator.none.fl_str_mv Bonelli, Lucas Emmanuel
Cerrudo, Aníbal Alejandro
Olmedo Pico, Belen
Di Matteo, Javier. A
Monzon, Juan Pablo
Rizzalli, Roberto Héctor
Andrade, Fernando Hector
author Bonelli, Lucas Emmanuel
author_facet Bonelli, Lucas Emmanuel
Cerrudo, Aníbal Alejandro
Olmedo Pico, Belen
Di Matteo, Javier. A
Monzon, Juan Pablo
Rizzalli, Roberto Héctor
Andrade, Fernando Hector
author_role author
author2 Cerrudo, Aníbal Alejandro
Olmedo Pico, Belen
Di Matteo, Javier. A
Monzon, Juan Pablo
Rizzalli, Roberto Héctor
Andrade, Fernando Hector
author2_role author
author
author
author
author
author
dc.subject.none.fl_str_mv Maíz
Floración
Crecimiento
Radiación Térmica
Rendimiento de Cultivos
Maize
Flowering
Growth
Thermal Radiation
Crop Yield
topic Maíz
Floración
Crecimiento
Radiación Térmica
Rendimiento de Cultivos
Maize
Flowering
Growth
Thermal Radiation
Crop Yield
dc.description.none.fl_txt_mv After canopy closure and in the absence of limitations by water or nutrient availability, crop growth rate (CGR) of maize (Zea mays L.) is ultimately constrained by the daily incident radiation and temperature of the environment. Sustaining maximal canopy photosynthetic capacity after-flowering is, then, a necessary but not a sufficient condition to increase maize dry-matter production. The aim of the present study was to determine the extent of the photo-thermal environment limitation to CGR during the post-flowering period in current maize crops. Dynamic of CGR was studied in two well-irrigated and nourished maize field experiments (Exp. 1 and Exp. 2 for 2010−11 and 2011−12 cropping seasons, respectively) on conventional crops (i.e. full-season hybrid planted early in the season) at Balcarce, Argentina (37° 45’ S, 58° 18’ W; 130 m a.s.l.). Two independent methods were performed to benchmark the CGR of these conventional crops during the post-flowering period: i) empirical CGR values obtained under the same weather conditions from younger maize crops, and ii) theoretically estimated potential CGR, obtained as a function of daily incident radiation and potential radiation use-efficiency (RUE). Conventional crops reached the maximal CGR near flowering in mid-January, being 51.2 g m−2 d−1 and 58.8 g m−2 d−1 in Exp. 1 and Exp. 2, respectively. Afterwards, CGR decreased progressively towards crops maturity late in March. Estimates, from either the empirical or the theoretical method, indicated that although attainable-CGR decreases progressively towards the end of the cropping season, it sustains higher values than those achieved by conventional crops after flowering. Differences in attainable vs. actual-CGR was almost exclusively attributable to RUE, which, in turn, could not be explained solely by the post-flowering foliar nitrogen withdrawal. Differences between actual (1987 g m−2 in Exp. 1 and 1614 g m−2 in Exp. 2) and potential post-flowering dry-matter production defined gaps that were in the range 18.2%–47.8%. From these results, it can be concluded that the photo-thermal environment is not, at least so far, the limiting factor to the post-flowering maize growth. Further research is needed, however, to analyze the viability of increasing potential yield of maize through the closure of these estimated gaps.
EEA Balcarce
Fil: Bonelli, Lucas Emmanuel. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Cerrudo, Aníbal Alejandro. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina.
Fil: Olmedo Pico, Lía Belén. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Investigación Animal del Chaco Semiárido; Argentina. Purdue University. Departament of Agronomy; Estados Unidos
Fil: Di Matteo, Javier. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina.
Fil: Monzon, Juan Pablo. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Rizzalli, Roberto Héctor. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina.
Fil: Andrade, Fernando Héctor. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina. . Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Argentina
description After canopy closure and in the absence of limitations by water or nutrient availability, crop growth rate (CGR) of maize (Zea mays L.) is ultimately constrained by the daily incident radiation and temperature of the environment. Sustaining maximal canopy photosynthetic capacity after-flowering is, then, a necessary but not a sufficient condition to increase maize dry-matter production. The aim of the present study was to determine the extent of the photo-thermal environment limitation to CGR during the post-flowering period in current maize crops. Dynamic of CGR was studied in two well-irrigated and nourished maize field experiments (Exp. 1 and Exp. 2 for 2010−11 and 2011−12 cropping seasons, respectively) on conventional crops (i.e. full-season hybrid planted early in the season) at Balcarce, Argentina (37° 45’ S, 58° 18’ W; 130 m a.s.l.). Two independent methods were performed to benchmark the CGR of these conventional crops during the post-flowering period: i) empirical CGR values obtained under the same weather conditions from younger maize crops, and ii) theoretically estimated potential CGR, obtained as a function of daily incident radiation and potential radiation use-efficiency (RUE). Conventional crops reached the maximal CGR near flowering in mid-January, being 51.2 g m−2 d−1 and 58.8 g m−2 d−1 in Exp. 1 and Exp. 2, respectively. Afterwards, CGR decreased progressively towards crops maturity late in March. Estimates, from either the empirical or the theoretical method, indicated that although attainable-CGR decreases progressively towards the end of the cropping season, it sustains higher values than those achieved by conventional crops after flowering. Differences in attainable vs. actual-CGR was almost exclusively attributable to RUE, which, in turn, could not be explained solely by the post-flowering foliar nitrogen withdrawal. Differences between actual (1987 g m−2 in Exp. 1 and 1614 g m−2 in Exp. 2) and potential post-flowering dry-matter production defined gaps that were in the range 18.2%–47.8%. From these results, it can be concluded that the photo-thermal environment is not, at least so far, the limiting factor to the post-flowering maize growth. Further research is needed, however, to analyze the viability of increasing potential yield of maize through the closure of these estimated gaps.
publishDate 2020
dc.date.none.fl_str_mv 2020-06-09T18:33:40Z
2020-06-09T18:33:40Z
2020-07-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12123/7386
https://www.sciencedirect.com/science/article/abs/pii/S0378429019320076
0378-4290
https://doi.org/10.1016/j.fcr.2020.107805
url http://hdl.handle.net/20.500.12123/7386
https://www.sciencedirect.com/science/article/abs/pii/S0378429019320076
https://doi.org/10.1016/j.fcr.2020.107805
identifier_str_mv 0378-4290
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
eu_rights_str_mv restrictedAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv Field Crops Research 252 : 107805 (2020)
reponame:INTA Digital (INTA)
instname:Instituto Nacional de Tecnología Agropecuaria
reponame_str INTA Digital (INTA)
collection INTA Digital (INTA)
instname_str Instituto Nacional de Tecnología Agropecuaria
repository.name.fl_str_mv INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria
repository.mail.fl_str_mv tripaldi.nicolas@inta.gob.ar
_version_ 1844619145035907072
score 12.559606