Whole-Genome Resequencing of Spontaneous Oxidative Stress-Resistant Mutants Reveals an Antioxidant System of Bradyrhizobium japonicum Involved in Soybean Colonization
- Autores
- Liebrenz, Karen Ivana; Gomez, Maria Cristina; Brambilla, Silvina Maricel; Frare, Romina Alejandra; Stritzler, Margarita; Maguire, Vanina; Ruiz, Oscar; Soldini, Diego Omar; Pascuan, Cecilia Gabriela; Soto, Gabriela Cynthia; Ayub, Nicolás Daniel
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Soybean is the most inoculant-consuming crop in the world, carrying strains belonging to the extremely related species Bradyrhizobium japonicum and Bradyrhizobium diazoefficiens. Currently, it is well known that B. japonicum has higher efficiency of soybean colonization than B. diazoefficiens, but the molecular mechanism underlying this differential symbiotic performance remains unclear. In the present study, genome resequencing of four spontaneous oxidative stress–resistant mutants derived from the commercial strain B. japonicum E109 combined with molecular and physiological studies allowed identifying an antioxidant cluster (BjAC) containing a transcriptional regulator (glxA) that controls the expression of a catalase (catA) and a phosphohydrolase (yfbR) related to the hydrolysis of hydrogen peroxide and oxidized nucleotides, respectively. Integrated synteny and phylogenetic analyses supported the fact that BjAC emergence in the B. japonicum lineage occurred after its divergence from the B. diazoefficiens lineage. The transformation of the model bacterium B. diazoefficiens USDA110 with BjAC from E109 significantly increased its ability to colonize soybean roots, experimentally recapitulating the beneficial effects of the occurrence of BjAC in B. japonicum. In addition, the glxA mutation significantly increased the nodulation competitiveness and plant growth–promoting efficiency of E109. Finally, the potential applications of these types of non-genetically modified mutant microbes in soybean production worldwide are discussed.
Instituto de Biotecnología
Fil: Liebrenz, Karen Ivana. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Genética; Argentina
Fil: Liebrenz, Karen Ivana. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular (IABIMO); Argentina
Fil: Gomez, Maria Cristina. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Genética; Argentina
Fil: Gomez, Maria Cristina. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular (IABIMO); Argentina
Fil: Brambilla, Silvina Maricel. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Genética; Argentina.
Fil: Brambilla, Silvina Maricel. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular; Argentina.
Fil: Frare, Romina Alejandra. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Genética; Argentina.
Fil: Frare, Romina Alejandra. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular (IABIMO); Argentina
Fil: Stritzler, Margarita. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Genética; Argentina.
Fil: Stritzler, Margarita. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular; Argentina.
Fil: Maguire, Vanina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Tecnológico Chascomús; Argentina
Fil: Ruiz, Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Tecnológico Chascomús; Argentina
Fil: Soldini, Diego Omar. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Marcos Juárez; Argentina
Fil: Pascuan, Cecilia Gabriela. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Genética; Argentina
Fil: Pascuan, Cecilia Gabriela. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular (IABIMO); Argentina
Fil: Soto, Gabriela Cinthia. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Genética; Argentina.
Fil: Soto, Gabriela Cinthia. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular; Argentina.
Fil: Ayub, Nicolás Daniel. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Genética; Argentina.
Fil: Ayub, Nicolás Daniel. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular; Argentina. - Fuente
- Microbial Ecology (Published: 15 November 2021)
- Materia
-
Soja
Bradyrhizobium japonicum
Estrés Oxidativo
Genomas
Secuencia Nucleotídica
Soybeans
Oxidative Stress
Genomes
Nucleotide Sequence - Nivel de accesibilidad
- acceso restringido
- Condiciones de uso
- Repositorio
- Institución
- Instituto Nacional de Tecnología Agropecuaria
- OAI Identificador
- oai:localhost:20.500.12123/10872
Ver los metadatos del registro completo
id |
INTADig_c958338569d89d679fbd4beab58e8070 |
---|---|
oai_identifier_str |
oai:localhost:20.500.12123/10872 |
network_acronym_str |
INTADig |
repository_id_str |
l |
network_name_str |
INTA Digital (INTA) |
spelling |
Whole-Genome Resequencing of Spontaneous Oxidative Stress-Resistant Mutants Reveals an Antioxidant System of Bradyrhizobium japonicum Involved in Soybean ColonizationLiebrenz, Karen IvanaGomez, Maria CristinaBrambilla, Silvina MaricelFrare, Romina AlejandraStritzler, MargaritaMaguire, VaninaRuiz, OscarSoldini, Diego OmarPascuan, Cecilia GabrielaSoto, Gabriela CynthiaAyub, Nicolás DanielSojaBradyrhizobium japonicumEstrés OxidativoGenomasSecuencia NucleotídicaSoybeansOxidative StressGenomesNucleotide SequenceSoybean is the most inoculant-consuming crop in the world, carrying strains belonging to the extremely related species Bradyrhizobium japonicum and Bradyrhizobium diazoefficiens. Currently, it is well known that B. japonicum has higher efficiency of soybean colonization than B. diazoefficiens, but the molecular mechanism underlying this differential symbiotic performance remains unclear. In the present study, genome resequencing of four spontaneous oxidative stress–resistant mutants derived from the commercial strain B. japonicum E109 combined with molecular and physiological studies allowed identifying an antioxidant cluster (BjAC) containing a transcriptional regulator (glxA) that controls the expression of a catalase (catA) and a phosphohydrolase (yfbR) related to the hydrolysis of hydrogen peroxide and oxidized nucleotides, respectively. Integrated synteny and phylogenetic analyses supported the fact that BjAC emergence in the B. japonicum lineage occurred after its divergence from the B. diazoefficiens lineage. The transformation of the model bacterium B. diazoefficiens USDA110 with BjAC from E109 significantly increased its ability to colonize soybean roots, experimentally recapitulating the beneficial effects of the occurrence of BjAC in B. japonicum. In addition, the glxA mutation significantly increased the nodulation competitiveness and plant growth–promoting efficiency of E109. Finally, the potential applications of these types of non-genetically modified mutant microbes in soybean production worldwide are discussed.Instituto de BiotecnologíaFil: Liebrenz, Karen Ivana. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Genética; ArgentinaFil: Liebrenz, Karen Ivana. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular (IABIMO); ArgentinaFil: Gomez, Maria Cristina. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Genética; ArgentinaFil: Gomez, Maria Cristina. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular (IABIMO); ArgentinaFil: Brambilla, Silvina Maricel. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Genética; Argentina.Fil: Brambilla, Silvina Maricel. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular; Argentina.Fil: Frare, Romina Alejandra. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Genética; Argentina.Fil: Frare, Romina Alejandra. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular (IABIMO); ArgentinaFil: Stritzler, Margarita. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Genética; Argentina.Fil: Stritzler, Margarita. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular; Argentina.Fil: Maguire, Vanina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Tecnológico Chascomús; ArgentinaFil: Ruiz, Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Tecnológico Chascomús; ArgentinaFil: Soldini, Diego Omar. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Marcos Juárez; ArgentinaFil: Pascuan, Cecilia Gabriela. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Genética; ArgentinaFil: Pascuan, Cecilia Gabriela. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular (IABIMO); ArgentinaFil: Soto, Gabriela Cinthia. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Genética; Argentina.Fil: Soto, Gabriela Cinthia. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular; Argentina.Fil: Ayub, Nicolás Daniel. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Genética; Argentina.Fil: Ayub, Nicolás Daniel. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular; Argentina.Springer2021-12-09T14:26:42Z2021-12-09T14:26:42Z2021-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12123/10872https://link.springer.com/article/10.1007/s00248-021-01925-20095-36281432-184Xhttps://doi.org/10.1007/s00248-021-01925-2Microbial Ecology (Published: 15 November 2021)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repograntAgreement/INTA/2019-PE-E6-I115-001/2019-PE-E6-I115-001/AR./Edición génica, transgénesis y mutagénesis como generadores de nueva variabilidad en especies de interés agropecuarioinfo:eu-repograntAgreement/INTA/2019-PD-E6-I116-001/2019-PD-E6-I116-001/AR./Identificación y análisis funcional de genes o redes génicas de interés biotecnológico con fin agropecuario, forestal, agroalimentario y/o agroindustrial.info:eu-repo/semantics/restrictedAccess2025-09-29T13:45:25Zoai:localhost:20.500.12123/10872instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-09-29 13:45:26.053INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse |
dc.title.none.fl_str_mv |
Whole-Genome Resequencing of Spontaneous Oxidative Stress-Resistant Mutants Reveals an Antioxidant System of Bradyrhizobium japonicum Involved in Soybean Colonization |
title |
Whole-Genome Resequencing of Spontaneous Oxidative Stress-Resistant Mutants Reveals an Antioxidant System of Bradyrhizobium japonicum Involved in Soybean Colonization |
spellingShingle |
Whole-Genome Resequencing of Spontaneous Oxidative Stress-Resistant Mutants Reveals an Antioxidant System of Bradyrhizobium japonicum Involved in Soybean Colonization Liebrenz, Karen Ivana Soja Bradyrhizobium japonicum Estrés Oxidativo Genomas Secuencia Nucleotídica Soybeans Oxidative Stress Genomes Nucleotide Sequence |
title_short |
Whole-Genome Resequencing of Spontaneous Oxidative Stress-Resistant Mutants Reveals an Antioxidant System of Bradyrhizobium japonicum Involved in Soybean Colonization |
title_full |
Whole-Genome Resequencing of Spontaneous Oxidative Stress-Resistant Mutants Reveals an Antioxidant System of Bradyrhizobium japonicum Involved in Soybean Colonization |
title_fullStr |
Whole-Genome Resequencing of Spontaneous Oxidative Stress-Resistant Mutants Reveals an Antioxidant System of Bradyrhizobium japonicum Involved in Soybean Colonization |
title_full_unstemmed |
Whole-Genome Resequencing of Spontaneous Oxidative Stress-Resistant Mutants Reveals an Antioxidant System of Bradyrhizobium japonicum Involved in Soybean Colonization |
title_sort |
Whole-Genome Resequencing of Spontaneous Oxidative Stress-Resistant Mutants Reveals an Antioxidant System of Bradyrhizobium japonicum Involved in Soybean Colonization |
dc.creator.none.fl_str_mv |
Liebrenz, Karen Ivana Gomez, Maria Cristina Brambilla, Silvina Maricel Frare, Romina Alejandra Stritzler, Margarita Maguire, Vanina Ruiz, Oscar Soldini, Diego Omar Pascuan, Cecilia Gabriela Soto, Gabriela Cynthia Ayub, Nicolás Daniel |
author |
Liebrenz, Karen Ivana |
author_facet |
Liebrenz, Karen Ivana Gomez, Maria Cristina Brambilla, Silvina Maricel Frare, Romina Alejandra Stritzler, Margarita Maguire, Vanina Ruiz, Oscar Soldini, Diego Omar Pascuan, Cecilia Gabriela Soto, Gabriela Cynthia Ayub, Nicolás Daniel |
author_role |
author |
author2 |
Gomez, Maria Cristina Brambilla, Silvina Maricel Frare, Romina Alejandra Stritzler, Margarita Maguire, Vanina Ruiz, Oscar Soldini, Diego Omar Pascuan, Cecilia Gabriela Soto, Gabriela Cynthia Ayub, Nicolás Daniel |
author2_role |
author author author author author author author author author author |
dc.subject.none.fl_str_mv |
Soja Bradyrhizobium japonicum Estrés Oxidativo Genomas Secuencia Nucleotídica Soybeans Oxidative Stress Genomes Nucleotide Sequence |
topic |
Soja Bradyrhizobium japonicum Estrés Oxidativo Genomas Secuencia Nucleotídica Soybeans Oxidative Stress Genomes Nucleotide Sequence |
dc.description.none.fl_txt_mv |
Soybean is the most inoculant-consuming crop in the world, carrying strains belonging to the extremely related species Bradyrhizobium japonicum and Bradyrhizobium diazoefficiens. Currently, it is well known that B. japonicum has higher efficiency of soybean colonization than B. diazoefficiens, but the molecular mechanism underlying this differential symbiotic performance remains unclear. In the present study, genome resequencing of four spontaneous oxidative stress–resistant mutants derived from the commercial strain B. japonicum E109 combined with molecular and physiological studies allowed identifying an antioxidant cluster (BjAC) containing a transcriptional regulator (glxA) that controls the expression of a catalase (catA) and a phosphohydrolase (yfbR) related to the hydrolysis of hydrogen peroxide and oxidized nucleotides, respectively. Integrated synteny and phylogenetic analyses supported the fact that BjAC emergence in the B. japonicum lineage occurred after its divergence from the B. diazoefficiens lineage. The transformation of the model bacterium B. diazoefficiens USDA110 with BjAC from E109 significantly increased its ability to colonize soybean roots, experimentally recapitulating the beneficial effects of the occurrence of BjAC in B. japonicum. In addition, the glxA mutation significantly increased the nodulation competitiveness and plant growth–promoting efficiency of E109. Finally, the potential applications of these types of non-genetically modified mutant microbes in soybean production worldwide are discussed. Instituto de Biotecnología Fil: Liebrenz, Karen Ivana. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Genética; Argentina Fil: Liebrenz, Karen Ivana. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular (IABIMO); Argentina Fil: Gomez, Maria Cristina. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Genética; Argentina Fil: Gomez, Maria Cristina. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular (IABIMO); Argentina Fil: Brambilla, Silvina Maricel. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Genética; Argentina. Fil: Brambilla, Silvina Maricel. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular; Argentina. Fil: Frare, Romina Alejandra. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Genética; Argentina. Fil: Frare, Romina Alejandra. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular (IABIMO); Argentina Fil: Stritzler, Margarita. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Genética; Argentina. Fil: Stritzler, Margarita. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular; Argentina. Fil: Maguire, Vanina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Tecnológico Chascomús; Argentina Fil: Ruiz, Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Tecnológico Chascomús; Argentina Fil: Soldini, Diego Omar. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Marcos Juárez; Argentina Fil: Pascuan, Cecilia Gabriela. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Genética; Argentina Fil: Pascuan, Cecilia Gabriela. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular (IABIMO); Argentina Fil: Soto, Gabriela Cinthia. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Genética; Argentina. Fil: Soto, Gabriela Cinthia. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular; Argentina. Fil: Ayub, Nicolás Daniel. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Genética; Argentina. Fil: Ayub, Nicolás Daniel. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular; Argentina. |
description |
Soybean is the most inoculant-consuming crop in the world, carrying strains belonging to the extremely related species Bradyrhizobium japonicum and Bradyrhizobium diazoefficiens. Currently, it is well known that B. japonicum has higher efficiency of soybean colonization than B. diazoefficiens, but the molecular mechanism underlying this differential symbiotic performance remains unclear. In the present study, genome resequencing of four spontaneous oxidative stress–resistant mutants derived from the commercial strain B. japonicum E109 combined with molecular and physiological studies allowed identifying an antioxidant cluster (BjAC) containing a transcriptional regulator (glxA) that controls the expression of a catalase (catA) and a phosphohydrolase (yfbR) related to the hydrolysis of hydrogen peroxide and oxidized nucleotides, respectively. Integrated synteny and phylogenetic analyses supported the fact that BjAC emergence in the B. japonicum lineage occurred after its divergence from the B. diazoefficiens lineage. The transformation of the model bacterium B. diazoefficiens USDA110 with BjAC from E109 significantly increased its ability to colonize soybean roots, experimentally recapitulating the beneficial effects of the occurrence of BjAC in B. japonicum. In addition, the glxA mutation significantly increased the nodulation competitiveness and plant growth–promoting efficiency of E109. Finally, the potential applications of these types of non-genetically modified mutant microbes in soybean production worldwide are discussed. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-12-09T14:26:42Z 2021-12-09T14:26:42Z 2021-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12123/10872 https://link.springer.com/article/10.1007/s00248-021-01925-2 0095-3628 1432-184X https://doi.org/10.1007/s00248-021-01925-2 |
url |
http://hdl.handle.net/20.500.12123/10872 https://link.springer.com/article/10.1007/s00248-021-01925-2 https://doi.org/10.1007/s00248-021-01925-2 |
identifier_str_mv |
0095-3628 1432-184X |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repograntAgreement/INTA/2019-PE-E6-I115-001/2019-PE-E6-I115-001/AR./Edición génica, transgénesis y mutagénesis como generadores de nueva variabilidad en especies de interés agropecuario info:eu-repograntAgreement/INTA/2019-PD-E6-I116-001/2019-PD-E6-I116-001/AR./Identificación y análisis funcional de genes o redes génicas de interés biotecnológico con fin agropecuario, forestal, agroalimentario y/o agroindustrial. |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
eu_rights_str_mv |
restrictedAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
Microbial Ecology (Published: 15 November 2021) reponame:INTA Digital (INTA) instname:Instituto Nacional de Tecnología Agropecuaria |
reponame_str |
INTA Digital (INTA) |
collection |
INTA Digital (INTA) |
instname_str |
Instituto Nacional de Tecnología Agropecuaria |
repository.name.fl_str_mv |
INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria |
repository.mail.fl_str_mv |
tripaldi.nicolas@inta.gob.ar |
_version_ |
1844619160427954176 |
score |
12.559606 |