Whole-Genome Resequencing of Spontaneous Oxidative Stress-Resistant Mutants Reveals an Antioxidant System of Bradyrhizobium japonicum Involved in Soybean Colonization

Autores
Liebrenz, Karen Ivana; Gomez, Maria Cristina; Brambilla, Silvina Maricel; Frare, Romina Alejandra; Stritzler, Margarita; Maguire, Vanina; Ruiz, Oscar; Soldini, Diego Omar; Pascuan, Cecilia Gabriela; Soto, Gabriela Cynthia; Ayub, Nicolás Daniel
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Soybean is the most inoculant-consuming crop in the world, carrying strains belonging to the extremely related species Bradyrhizobium japonicum and Bradyrhizobium diazoefficiens. Currently, it is well known that B. japonicum has higher efficiency of soybean colonization than B. diazoefficiens, but the molecular mechanism underlying this differential symbiotic performance remains unclear. In the present study, genome resequencing of four spontaneous oxidative stress–resistant mutants derived from the commercial strain B. japonicum E109 combined with molecular and physiological studies allowed identifying an antioxidant cluster (BjAC) containing a transcriptional regulator (glxA) that controls the expression of a catalase (catA) and a phosphohydrolase (yfbR) related to the hydrolysis of hydrogen peroxide and oxidized nucleotides, respectively. Integrated synteny and phylogenetic analyses supported the fact that BjAC emergence in the B. japonicum lineage occurred after its divergence from the B. diazoefficiens lineage. The transformation of the model bacterium B. diazoefficiens USDA110 with BjAC from E109 significantly increased its ability to colonize soybean roots, experimentally recapitulating the beneficial effects of the occurrence of BjAC in B. japonicum. In addition, the glxA mutation significantly increased the nodulation competitiveness and plant growth–promoting efficiency of E109. Finally, the potential applications of these types of non-genetically modified mutant microbes in soybean production worldwide are discussed.
Instituto de Biotecnología
Fil: Liebrenz, Karen Ivana. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Genética; Argentina
Fil: Liebrenz, Karen Ivana. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular (IABIMO); Argentina
Fil: Gomez, Maria Cristina. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Genética; Argentina
Fil: Gomez, Maria Cristina. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular (IABIMO); Argentina
Fil: Brambilla, Silvina Maricel. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Genética; Argentina.
Fil: Brambilla, Silvina Maricel. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular; Argentina.
Fil: Frare, Romina Alejandra. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Genética; Argentina.
Fil: Frare, Romina Alejandra. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular (IABIMO); Argentina
Fil: Stritzler, Margarita. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Genética; Argentina.
Fil: Stritzler, Margarita. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular; Argentina.
Fil: Maguire, Vanina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Tecnológico Chascomús; Argentina
Fil: Ruiz, Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Tecnológico Chascomús; Argentina
Fil: Soldini, Diego Omar. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Marcos Juárez; Argentina
Fil: Pascuan, Cecilia Gabriela. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Genética; Argentina
Fil: Pascuan, Cecilia Gabriela. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular (IABIMO); Argentina
Fil: Soto, Gabriela Cinthia. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Genética; Argentina.
Fil: Soto, Gabriela Cinthia. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular; Argentina.
Fil: Ayub, Nicolás Daniel. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Genética; Argentina.
Fil: Ayub, Nicolás Daniel. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular; Argentina.
Fuente
Microbial Ecology (Published: 15 November 2021)
Materia
Soja
Bradyrhizobium japonicum
Estrés Oxidativo
Genomas
Secuencia Nucleotídica
Soybeans
Oxidative Stress
Genomes
Nucleotide Sequence
Nivel de accesibilidad
acceso restringido
Condiciones de uso
Repositorio
INTA Digital (INTA)
Institución
Instituto Nacional de Tecnología Agropecuaria
OAI Identificador
oai:localhost:20.500.12123/10872

id INTADig_c958338569d89d679fbd4beab58e8070
oai_identifier_str oai:localhost:20.500.12123/10872
network_acronym_str INTADig
repository_id_str l
network_name_str INTA Digital (INTA)
spelling Whole-Genome Resequencing of Spontaneous Oxidative Stress-Resistant Mutants Reveals an Antioxidant System of Bradyrhizobium japonicum Involved in Soybean ColonizationLiebrenz, Karen IvanaGomez, Maria CristinaBrambilla, Silvina MaricelFrare, Romina AlejandraStritzler, MargaritaMaguire, VaninaRuiz, OscarSoldini, Diego OmarPascuan, Cecilia GabrielaSoto, Gabriela CynthiaAyub, Nicolás DanielSojaBradyrhizobium japonicumEstrés OxidativoGenomasSecuencia NucleotídicaSoybeansOxidative StressGenomesNucleotide SequenceSoybean is the most inoculant-consuming crop in the world, carrying strains belonging to the extremely related species Bradyrhizobium japonicum and Bradyrhizobium diazoefficiens. Currently, it is well known that B. japonicum has higher efficiency of soybean colonization than B. diazoefficiens, but the molecular mechanism underlying this differential symbiotic performance remains unclear. In the present study, genome resequencing of four spontaneous oxidative stress–resistant mutants derived from the commercial strain B. japonicum E109 combined with molecular and physiological studies allowed identifying an antioxidant cluster (BjAC) containing a transcriptional regulator (glxA) that controls the expression of a catalase (catA) and a phosphohydrolase (yfbR) related to the hydrolysis of hydrogen peroxide and oxidized nucleotides, respectively. Integrated synteny and phylogenetic analyses supported the fact that BjAC emergence in the B. japonicum lineage occurred after its divergence from the B. diazoefficiens lineage. The transformation of the model bacterium B. diazoefficiens USDA110 with BjAC from E109 significantly increased its ability to colonize soybean roots, experimentally recapitulating the beneficial effects of the occurrence of BjAC in B. japonicum. In addition, the glxA mutation significantly increased the nodulation competitiveness and plant growth–promoting efficiency of E109. Finally, the potential applications of these types of non-genetically modified mutant microbes in soybean production worldwide are discussed.Instituto de BiotecnologíaFil: Liebrenz, Karen Ivana. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Genética; ArgentinaFil: Liebrenz, Karen Ivana. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular (IABIMO); ArgentinaFil: Gomez, Maria Cristina. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Genética; ArgentinaFil: Gomez, Maria Cristina. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular (IABIMO); ArgentinaFil: Brambilla, Silvina Maricel. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Genética; Argentina.Fil: Brambilla, Silvina Maricel. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular; Argentina.Fil: Frare, Romina Alejandra. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Genética; Argentina.Fil: Frare, Romina Alejandra. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular (IABIMO); ArgentinaFil: Stritzler, Margarita. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Genética; Argentina.Fil: Stritzler, Margarita. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular; Argentina.Fil: Maguire, Vanina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Tecnológico Chascomús; ArgentinaFil: Ruiz, Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Tecnológico Chascomús; ArgentinaFil: Soldini, Diego Omar. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Marcos Juárez; ArgentinaFil: Pascuan, Cecilia Gabriela. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Genética; ArgentinaFil: Pascuan, Cecilia Gabriela. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular (IABIMO); ArgentinaFil: Soto, Gabriela Cinthia. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Genética; Argentina.Fil: Soto, Gabriela Cinthia. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular; Argentina.Fil: Ayub, Nicolás Daniel. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Genética; Argentina.Fil: Ayub, Nicolás Daniel. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular; Argentina.Springer2021-12-09T14:26:42Z2021-12-09T14:26:42Z2021-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12123/10872https://link.springer.com/article/10.1007/s00248-021-01925-20095-36281432-184Xhttps://doi.org/10.1007/s00248-021-01925-2Microbial Ecology (Published: 15 November 2021)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repograntAgreement/INTA/2019-PE-E6-I115-001/2019-PE-E6-I115-001/AR./Edición génica, transgénesis y mutagénesis como generadores de nueva variabilidad en especies de interés agropecuarioinfo:eu-repograntAgreement/INTA/2019-PD-E6-I116-001/2019-PD-E6-I116-001/AR./Identificación y análisis funcional de genes o redes génicas de interés biotecnológico con fin agropecuario, forestal, agroalimentario y/o agroindustrial.info:eu-repo/semantics/restrictedAccess2025-09-29T13:45:25Zoai:localhost:20.500.12123/10872instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-09-29 13:45:26.053INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse
dc.title.none.fl_str_mv Whole-Genome Resequencing of Spontaneous Oxidative Stress-Resistant Mutants Reveals an Antioxidant System of Bradyrhizobium japonicum Involved in Soybean Colonization
title Whole-Genome Resequencing of Spontaneous Oxidative Stress-Resistant Mutants Reveals an Antioxidant System of Bradyrhizobium japonicum Involved in Soybean Colonization
spellingShingle Whole-Genome Resequencing of Spontaneous Oxidative Stress-Resistant Mutants Reveals an Antioxidant System of Bradyrhizobium japonicum Involved in Soybean Colonization
Liebrenz, Karen Ivana
Soja
Bradyrhizobium japonicum
Estrés Oxidativo
Genomas
Secuencia Nucleotídica
Soybeans
Oxidative Stress
Genomes
Nucleotide Sequence
title_short Whole-Genome Resequencing of Spontaneous Oxidative Stress-Resistant Mutants Reveals an Antioxidant System of Bradyrhizobium japonicum Involved in Soybean Colonization
title_full Whole-Genome Resequencing of Spontaneous Oxidative Stress-Resistant Mutants Reveals an Antioxidant System of Bradyrhizobium japonicum Involved in Soybean Colonization
title_fullStr Whole-Genome Resequencing of Spontaneous Oxidative Stress-Resistant Mutants Reveals an Antioxidant System of Bradyrhizobium japonicum Involved in Soybean Colonization
title_full_unstemmed Whole-Genome Resequencing of Spontaneous Oxidative Stress-Resistant Mutants Reveals an Antioxidant System of Bradyrhizobium japonicum Involved in Soybean Colonization
title_sort Whole-Genome Resequencing of Spontaneous Oxidative Stress-Resistant Mutants Reveals an Antioxidant System of Bradyrhizobium japonicum Involved in Soybean Colonization
dc.creator.none.fl_str_mv Liebrenz, Karen Ivana
Gomez, Maria Cristina
Brambilla, Silvina Maricel
Frare, Romina Alejandra
Stritzler, Margarita
Maguire, Vanina
Ruiz, Oscar
Soldini, Diego Omar
Pascuan, Cecilia Gabriela
Soto, Gabriela Cynthia
Ayub, Nicolás Daniel
author Liebrenz, Karen Ivana
author_facet Liebrenz, Karen Ivana
Gomez, Maria Cristina
Brambilla, Silvina Maricel
Frare, Romina Alejandra
Stritzler, Margarita
Maguire, Vanina
Ruiz, Oscar
Soldini, Diego Omar
Pascuan, Cecilia Gabriela
Soto, Gabriela Cynthia
Ayub, Nicolás Daniel
author_role author
author2 Gomez, Maria Cristina
Brambilla, Silvina Maricel
Frare, Romina Alejandra
Stritzler, Margarita
Maguire, Vanina
Ruiz, Oscar
Soldini, Diego Omar
Pascuan, Cecilia Gabriela
Soto, Gabriela Cynthia
Ayub, Nicolás Daniel
author2_role author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Soja
Bradyrhizobium japonicum
Estrés Oxidativo
Genomas
Secuencia Nucleotídica
Soybeans
Oxidative Stress
Genomes
Nucleotide Sequence
topic Soja
Bradyrhizobium japonicum
Estrés Oxidativo
Genomas
Secuencia Nucleotídica
Soybeans
Oxidative Stress
Genomes
Nucleotide Sequence
dc.description.none.fl_txt_mv Soybean is the most inoculant-consuming crop in the world, carrying strains belonging to the extremely related species Bradyrhizobium japonicum and Bradyrhizobium diazoefficiens. Currently, it is well known that B. japonicum has higher efficiency of soybean colonization than B. diazoefficiens, but the molecular mechanism underlying this differential symbiotic performance remains unclear. In the present study, genome resequencing of four spontaneous oxidative stress–resistant mutants derived from the commercial strain B. japonicum E109 combined with molecular and physiological studies allowed identifying an antioxidant cluster (BjAC) containing a transcriptional regulator (glxA) that controls the expression of a catalase (catA) and a phosphohydrolase (yfbR) related to the hydrolysis of hydrogen peroxide and oxidized nucleotides, respectively. Integrated synteny and phylogenetic analyses supported the fact that BjAC emergence in the B. japonicum lineage occurred after its divergence from the B. diazoefficiens lineage. The transformation of the model bacterium B. diazoefficiens USDA110 with BjAC from E109 significantly increased its ability to colonize soybean roots, experimentally recapitulating the beneficial effects of the occurrence of BjAC in B. japonicum. In addition, the glxA mutation significantly increased the nodulation competitiveness and plant growth–promoting efficiency of E109. Finally, the potential applications of these types of non-genetically modified mutant microbes in soybean production worldwide are discussed.
Instituto de Biotecnología
Fil: Liebrenz, Karen Ivana. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Genética; Argentina
Fil: Liebrenz, Karen Ivana. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular (IABIMO); Argentina
Fil: Gomez, Maria Cristina. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Genética; Argentina
Fil: Gomez, Maria Cristina. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular (IABIMO); Argentina
Fil: Brambilla, Silvina Maricel. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Genética; Argentina.
Fil: Brambilla, Silvina Maricel. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular; Argentina.
Fil: Frare, Romina Alejandra. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Genética; Argentina.
Fil: Frare, Romina Alejandra. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular (IABIMO); Argentina
Fil: Stritzler, Margarita. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Genética; Argentina.
Fil: Stritzler, Margarita. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular; Argentina.
Fil: Maguire, Vanina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Tecnológico Chascomús; Argentina
Fil: Ruiz, Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Tecnológico Chascomús; Argentina
Fil: Soldini, Diego Omar. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Marcos Juárez; Argentina
Fil: Pascuan, Cecilia Gabriela. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Genética; Argentina
Fil: Pascuan, Cecilia Gabriela. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular (IABIMO); Argentina
Fil: Soto, Gabriela Cinthia. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Genética; Argentina.
Fil: Soto, Gabriela Cinthia. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular; Argentina.
Fil: Ayub, Nicolás Daniel. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Genética; Argentina.
Fil: Ayub, Nicolás Daniel. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular; Argentina.
description Soybean is the most inoculant-consuming crop in the world, carrying strains belonging to the extremely related species Bradyrhizobium japonicum and Bradyrhizobium diazoefficiens. Currently, it is well known that B. japonicum has higher efficiency of soybean colonization than B. diazoefficiens, but the molecular mechanism underlying this differential symbiotic performance remains unclear. In the present study, genome resequencing of four spontaneous oxidative stress–resistant mutants derived from the commercial strain B. japonicum E109 combined with molecular and physiological studies allowed identifying an antioxidant cluster (BjAC) containing a transcriptional regulator (glxA) that controls the expression of a catalase (catA) and a phosphohydrolase (yfbR) related to the hydrolysis of hydrogen peroxide and oxidized nucleotides, respectively. Integrated synteny and phylogenetic analyses supported the fact that BjAC emergence in the B. japonicum lineage occurred after its divergence from the B. diazoefficiens lineage. The transformation of the model bacterium B. diazoefficiens USDA110 with BjAC from E109 significantly increased its ability to colonize soybean roots, experimentally recapitulating the beneficial effects of the occurrence of BjAC in B. japonicum. In addition, the glxA mutation significantly increased the nodulation competitiveness and plant growth–promoting efficiency of E109. Finally, the potential applications of these types of non-genetically modified mutant microbes in soybean production worldwide are discussed.
publishDate 2021
dc.date.none.fl_str_mv 2021-12-09T14:26:42Z
2021-12-09T14:26:42Z
2021-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12123/10872
https://link.springer.com/article/10.1007/s00248-021-01925-2
0095-3628
1432-184X
https://doi.org/10.1007/s00248-021-01925-2
url http://hdl.handle.net/20.500.12123/10872
https://link.springer.com/article/10.1007/s00248-021-01925-2
https://doi.org/10.1007/s00248-021-01925-2
identifier_str_mv 0095-3628
1432-184X
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repograntAgreement/INTA/2019-PE-E6-I115-001/2019-PE-E6-I115-001/AR./Edición génica, transgénesis y mutagénesis como generadores de nueva variabilidad en especies de interés agropecuario
info:eu-repograntAgreement/INTA/2019-PD-E6-I116-001/2019-PD-E6-I116-001/AR./Identificación y análisis funcional de genes o redes génicas de interés biotecnológico con fin agropecuario, forestal, agroalimentario y/o agroindustrial.
dc.rights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
eu_rights_str_mv restrictedAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv Microbial Ecology (Published: 15 November 2021)
reponame:INTA Digital (INTA)
instname:Instituto Nacional de Tecnología Agropecuaria
reponame_str INTA Digital (INTA)
collection INTA Digital (INTA)
instname_str Instituto Nacional de Tecnología Agropecuaria
repository.name.fl_str_mv INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria
repository.mail.fl_str_mv tripaldi.nicolas@inta.gob.ar
_version_ 1844619160427954176
score 12.559606