Prediction of the extractives content of Eucalyptus globulus wood using NIRbased PLS-R models. Influence of spectral range and preprocessing on the percentage of outliers detected

Autores
Simões, R.; Alves, A.; Pathauer, Pablo Santiago; Palazzini, Dino; Marcucci Poltri, Susana Noemi; Rodrigues, J.
Año de publicación
2022
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Eucalyptus globulus is an important pulpwood source due to favorable wood characteristics, including low extractive content. However, there is significant tree-to-tree variation that can be exploited in breeding. This requires screening a large number of samples, which NIR and PLS-R make possible. Models are typically developed for a specific set of samples prepared in the same way. The question is: how well these models predict samples that are different from the ones used in the model. Models developed to determine the extractive content of Eucalyptus globulus wood from Australia were used to E. globulus wood from Argentina, which differed in age and sample preparation. The main difference between spectra of the two origins was in the OH combination band, despite the fact that samples were dried identically. Due to this difference, models that included the O-H band assigned above 73% of the spectra as outliers regardless of preprocessing, whereas models that did not include the O-H band assigned fewer spectra as outliers. The differences in the OH band were attributed primarily to differences in particle size and extractive content, rather than to differences in humidity content. However, all models predict similar results for all samples, including outliers.
Fil: Simoes, R. Universidade de Lisboa. Instituto Superior de Agronomía. Centro de Estudos Florestais; Portugal
Fil: Alves, A. Universidade de Lisboa. Instituto Superior de Agronomía. Centro de Estudos Florestais; Portugal
Fil: Pathauer, Pablo Santiago. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Recursos Biológicos; Argentina
Fil: Palazzini, Dino A. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Recursos Biológicos; Argentino. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Marcucci Poltri, Susana Noemi. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Biotecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Rodrigues, J. Universidade de Lisboa. Instituto Superior de Agronomía. Centro de Estudos Florestais; Portugal
Fuente
Journal of wood chemistry and technology 42 (5) : 352-360 (2022)
Materia
Outlier Analysis
Capital
Eucalyptus globulus
Valores Atípicos
Validación
Validation
Nivel de accesibilidad
acceso restringido
Condiciones de uso
Repositorio
INTA Digital (INTA)
Institución
Instituto Nacional de Tecnología Agropecuaria
OAI Identificador
oai:localhost:20.500.12123/13723

id INTADig_c858b055abba204583b32fe49672a206
oai_identifier_str oai:localhost:20.500.12123/13723
network_acronym_str INTADig
repository_id_str l
network_name_str INTA Digital (INTA)
spelling Prediction of the extractives content of Eucalyptus globulus wood using NIRbased PLS-R models. Influence of spectral range and preprocessing on the percentage of outliers detectedSimões, R.Alves, A.Pathauer, Pablo SantiagoPalazzini, DinoMarcucci Poltri, Susana NoemiRodrigues, J.Outlier AnalysisCapitalEucalyptus globulusValores AtípicosValidaciónValidationEucalyptus globulus is an important pulpwood source due to favorable wood characteristics, including low extractive content. However, there is significant tree-to-tree variation that can be exploited in breeding. This requires screening a large number of samples, which NIR and PLS-R make possible. Models are typically developed for a specific set of samples prepared in the same way. The question is: how well these models predict samples that are different from the ones used in the model. Models developed to determine the extractive content of Eucalyptus globulus wood from Australia were used to E. globulus wood from Argentina, which differed in age and sample preparation. The main difference between spectra of the two origins was in the OH combination band, despite the fact that samples were dried identically. Due to this difference, models that included the O-H band assigned above 73% of the spectra as outliers regardless of preprocessing, whereas models that did not include the O-H band assigned fewer spectra as outliers. The differences in the OH band were attributed primarily to differences in particle size and extractive content, rather than to differences in humidity content. However, all models predict similar results for all samples, including outliers.Fil: Simoes, R. Universidade de Lisboa. Instituto Superior de Agronomía. Centro de Estudos Florestais; PortugalFil: Alves, A. Universidade de Lisboa. Instituto Superior de Agronomía. Centro de Estudos Florestais; PortugalFil: Pathauer, Pablo Santiago. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Recursos Biológicos; ArgentinaFil: Palazzini, Dino A. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Recursos Biológicos; Argentino. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Marcucci Poltri, Susana Noemi. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Biotecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Rodrigues, J. Universidade de Lisboa. Instituto Superior de Agronomía. Centro de Estudos Florestais; PortugalTaylor & Francis2022-12-27T12:30:07Z2022-12-27T12:30:07Z2022-07-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12123/13723https://www.tandfonline.com/doi/abs/10.1080/02773813.2022.20960721532-2319https://doi.org/10.1080/02773813.2022.2096072Journal of wood chemistry and technology 42 (5) : 352-360 (2022)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repo/semantics/restrictedAccess2025-09-29T13:45:50Zoai:localhost:20.500.12123/13723instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-09-29 13:45:51.272INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse
dc.title.none.fl_str_mv Prediction of the extractives content of Eucalyptus globulus wood using NIRbased PLS-R models. Influence of spectral range and preprocessing on the percentage of outliers detected
title Prediction of the extractives content of Eucalyptus globulus wood using NIRbased PLS-R models. Influence of spectral range and preprocessing on the percentage of outliers detected
spellingShingle Prediction of the extractives content of Eucalyptus globulus wood using NIRbased PLS-R models. Influence of spectral range and preprocessing on the percentage of outliers detected
Simões, R.
Outlier Analysis
Capital
Eucalyptus globulus
Valores Atípicos
Validación
Validation
title_short Prediction of the extractives content of Eucalyptus globulus wood using NIRbased PLS-R models. Influence of spectral range and preprocessing on the percentage of outliers detected
title_full Prediction of the extractives content of Eucalyptus globulus wood using NIRbased PLS-R models. Influence of spectral range and preprocessing on the percentage of outliers detected
title_fullStr Prediction of the extractives content of Eucalyptus globulus wood using NIRbased PLS-R models. Influence of spectral range and preprocessing on the percentage of outliers detected
title_full_unstemmed Prediction of the extractives content of Eucalyptus globulus wood using NIRbased PLS-R models. Influence of spectral range and preprocessing on the percentage of outliers detected
title_sort Prediction of the extractives content of Eucalyptus globulus wood using NIRbased PLS-R models. Influence of spectral range and preprocessing on the percentage of outliers detected
dc.creator.none.fl_str_mv Simões, R.
Alves, A.
Pathauer, Pablo Santiago
Palazzini, Dino
Marcucci Poltri, Susana Noemi
Rodrigues, J.
author Simões, R.
author_facet Simões, R.
Alves, A.
Pathauer, Pablo Santiago
Palazzini, Dino
Marcucci Poltri, Susana Noemi
Rodrigues, J.
author_role author
author2 Alves, A.
Pathauer, Pablo Santiago
Palazzini, Dino
Marcucci Poltri, Susana Noemi
Rodrigues, J.
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv Outlier Analysis
Capital
Eucalyptus globulus
Valores Atípicos
Validación
Validation
topic Outlier Analysis
Capital
Eucalyptus globulus
Valores Atípicos
Validación
Validation
dc.description.none.fl_txt_mv Eucalyptus globulus is an important pulpwood source due to favorable wood characteristics, including low extractive content. However, there is significant tree-to-tree variation that can be exploited in breeding. This requires screening a large number of samples, which NIR and PLS-R make possible. Models are typically developed for a specific set of samples prepared in the same way. The question is: how well these models predict samples that are different from the ones used in the model. Models developed to determine the extractive content of Eucalyptus globulus wood from Australia were used to E. globulus wood from Argentina, which differed in age and sample preparation. The main difference between spectra of the two origins was in the OH combination band, despite the fact that samples were dried identically. Due to this difference, models that included the O-H band assigned above 73% of the spectra as outliers regardless of preprocessing, whereas models that did not include the O-H band assigned fewer spectra as outliers. The differences in the OH band were attributed primarily to differences in particle size and extractive content, rather than to differences in humidity content. However, all models predict similar results for all samples, including outliers.
Fil: Simoes, R. Universidade de Lisboa. Instituto Superior de Agronomía. Centro de Estudos Florestais; Portugal
Fil: Alves, A. Universidade de Lisboa. Instituto Superior de Agronomía. Centro de Estudos Florestais; Portugal
Fil: Pathauer, Pablo Santiago. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Recursos Biológicos; Argentina
Fil: Palazzini, Dino A. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Recursos Biológicos; Argentino. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Marcucci Poltri, Susana Noemi. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Biotecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Rodrigues, J. Universidade de Lisboa. Instituto Superior de Agronomía. Centro de Estudos Florestais; Portugal
description Eucalyptus globulus is an important pulpwood source due to favorable wood characteristics, including low extractive content. However, there is significant tree-to-tree variation that can be exploited in breeding. This requires screening a large number of samples, which NIR and PLS-R make possible. Models are typically developed for a specific set of samples prepared in the same way. The question is: how well these models predict samples that are different from the ones used in the model. Models developed to determine the extractive content of Eucalyptus globulus wood from Australia were used to E. globulus wood from Argentina, which differed in age and sample preparation. The main difference between spectra of the two origins was in the OH combination band, despite the fact that samples were dried identically. Due to this difference, models that included the O-H band assigned above 73% of the spectra as outliers regardless of preprocessing, whereas models that did not include the O-H band assigned fewer spectra as outliers. The differences in the OH band were attributed primarily to differences in particle size and extractive content, rather than to differences in humidity content. However, all models predict similar results for all samples, including outliers.
publishDate 2022
dc.date.none.fl_str_mv 2022-12-27T12:30:07Z
2022-12-27T12:30:07Z
2022-07-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12123/13723
https://www.tandfonline.com/doi/abs/10.1080/02773813.2022.2096072
1532-2319
https://doi.org/10.1080/02773813.2022.2096072
url http://hdl.handle.net/20.500.12123/13723
https://www.tandfonline.com/doi/abs/10.1080/02773813.2022.2096072
https://doi.org/10.1080/02773813.2022.2096072
identifier_str_mv 1532-2319
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
eu_rights_str_mv restrictedAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Taylor & Francis
publisher.none.fl_str_mv Taylor & Francis
dc.source.none.fl_str_mv Journal of wood chemistry and technology 42 (5) : 352-360 (2022)
reponame:INTA Digital (INTA)
instname:Instituto Nacional de Tecnología Agropecuaria
reponame_str INTA Digital (INTA)
collection INTA Digital (INTA)
instname_str Instituto Nacional de Tecnología Agropecuaria
repository.name.fl_str_mv INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria
repository.mail.fl_str_mv tripaldi.nicolas@inta.gob.ar
_version_ 1844619172762353664
score 12.559606