Mapping soil organic carbon content in Patagonian forests based on climate, topography and vegetation metrics from satellite imagery
- Autores
- Martínez Pastur, Guillermo José; Aravena Acuña, Marie Claire; Silveira, Eduarda M.O.; Von Müller, Axel; La Manna, Ludmila; González Polo, Marina; Chaves, Jimena Elizabeth; Cellini, Juan Manuel; Lencinas, María Vanessa; Radeloff, Volker C.; Pidgeon, Anna Michle; Peri, Pablo Luis
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Soil organic carbon (SOC) content supports several ecosystem services. Quantifying SOC requires: (i) accurate C estimates of forest components, and (ii) soil estimates. However, SOC is difficult to measure, so predictive models are needed. Our objective was to model SOC stocks within 30 cm depth in Patagonian forests based on climatic, topographic and vegetation productivity measures from satellite images, including Dynamic Habitat Indices and Land Surface Temperature derived from Landsat-8. We used data from 1320 stands of different forest types in Patagonia, and random forest regression to map SOC. The model captured SOC variability well (R2 = 0.60, RMSE = 22.1%), considering the huge latitudinal extension (36.4◦ to 55.1◦ SL) and the great diversity of forest types. Mean SOC was 134.4 ton C ha−1 ± 25.2, totaling 404.2 million ton C across Patagonia. Overall, SOC values were highest in valleys of the Andes mountains and in southern Tierra del Fuego, ranging from 53.5 to 277.8 ton C ha−1 for the whole Patagonia region. Soil organic carbon is a metric relevant to many applications, connecting major issues such as forest management, conservation, and livestock production, and having spatially explicit estimates of SOC enables managers to fulfil the international agreements that Argentina has joined.
EEA Esquel
Fil: Martínez Pastur, Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Austral de Investigaciones Científicas (CADIC). Laboratorio de Recursos Agroforestales; Argentina
Fil: Aravena Acuña, Marie Claire. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Austral de Investigaciones Científicas (CADIC). Laboratorio de Recursos Agroforestales; Argentina
Fil: Silveira, Eduarda M. O. University of Wisconsin. Department of Forest and Wildlife Ecology. SILVIS Lab.; Estados Unidos
Fil: von Müller, Axel. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agroforestal Esquel; Argentina
Fil: La Manna, Ludmila. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: La Manna, Ludmila. Universidad Nacional de la Patagonia San Juan Bosco. Facultad de Ingeniería. Centro de Estudios Ambientales Integrados; Argentina
Fil: González Polo, Marina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: González Polo, Marina. Universidad Nacional del Comahue. Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA); Argentina
Fil: Chaves, Jimena E. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Austral de Investigaciones Científicas (CADIC). Laboratorio de Recursos Agroforestales; Argentina
Fil: Cellini, Juan M. Universidad Nacional de La Plata. Laboratorio de Investigaciones en Maderas (LIMAD); Argentina
Fil: Lencinas, María V. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Austral de Investigaciones Científicas (CADIC). Laboratorio de Recursos Agroforestales; Argentina
Fil: Radeloff, Volker C. University of Wisconsin. Department of Forest and Wildlife Ecology. SILVIS Lab.; Estados Unidos
Fil: Pidgeon, Anna M. University of Wisconsin. Department of Forest and Wildlife Ecology. SILVIS Lab.; Estados Unidos
Fil: Peri, Pablo Luis. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Santa Cruz; Argentina.
Fil: Peri, Pablo Luis. Universidad Nacional de la Patagonia Austral; Argentina.
Fil: Peri, Pablo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. - Fuente
- Remote Sensing 14 : 5702. (2022)
- Materia
-
Soil Organic Carbon
Primary Forests
Satellite Imagery
Carbono Orgánico del Suelo
Bosque Primario
Imágenes por Satélites
Landsat-8
Región Patagónica
Dynamic Habitat Indices
Bosques Nativos - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Instituto Nacional de Tecnología Agropecuaria
- OAI Identificador
- oai:localhost:20.500.12123/13417
Ver los metadatos del registro completo
id |
INTADig_bf0c289a8633eb19f2a0e3c92cab912a |
---|---|
oai_identifier_str |
oai:localhost:20.500.12123/13417 |
network_acronym_str |
INTADig |
repository_id_str |
l |
network_name_str |
INTA Digital (INTA) |
spelling |
Mapping soil organic carbon content in Patagonian forests based on climate, topography and vegetation metrics from satellite imageryMartínez Pastur, Guillermo JoséAravena Acuña, Marie ClaireSilveira, Eduarda M.O.Von Müller, AxelLa Manna, LudmilaGonzález Polo, MarinaChaves, Jimena ElizabethCellini, Juan ManuelLencinas, María VanessaRadeloff, Volker C.Pidgeon, Anna MichlePeri, Pablo LuisSoil Organic CarbonPrimary ForestsSatellite ImageryCarbono Orgánico del SueloBosque PrimarioImágenes por SatélitesLandsat-8Región PatagónicaDynamic Habitat IndicesBosques NativosSoil organic carbon (SOC) content supports several ecosystem services. Quantifying SOC requires: (i) accurate C estimates of forest components, and (ii) soil estimates. However, SOC is difficult to measure, so predictive models are needed. Our objective was to model SOC stocks within 30 cm depth in Patagonian forests based on climatic, topographic and vegetation productivity measures from satellite images, including Dynamic Habitat Indices and Land Surface Temperature derived from Landsat-8. We used data from 1320 stands of different forest types in Patagonia, and random forest regression to map SOC. The model captured SOC variability well (R2 = 0.60, RMSE = 22.1%), considering the huge latitudinal extension (36.4◦ to 55.1◦ SL) and the great diversity of forest types. Mean SOC was 134.4 ton C ha−1 ± 25.2, totaling 404.2 million ton C across Patagonia. Overall, SOC values were highest in valleys of the Andes mountains and in southern Tierra del Fuego, ranging from 53.5 to 277.8 ton C ha−1 for the whole Patagonia region. Soil organic carbon is a metric relevant to many applications, connecting major issues such as forest management, conservation, and livestock production, and having spatially explicit estimates of SOC enables managers to fulfil the international agreements that Argentina has joined.EEA EsquelFil: Martínez Pastur, Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Austral de Investigaciones Científicas (CADIC). Laboratorio de Recursos Agroforestales; ArgentinaFil: Aravena Acuña, Marie Claire. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Austral de Investigaciones Científicas (CADIC). Laboratorio de Recursos Agroforestales; ArgentinaFil: Silveira, Eduarda M. O. University of Wisconsin. Department of Forest and Wildlife Ecology. SILVIS Lab.; Estados UnidosFil: von Müller, Axel. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agroforestal Esquel; ArgentinaFil: La Manna, Ludmila. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: La Manna, Ludmila. Universidad Nacional de la Patagonia San Juan Bosco. Facultad de Ingeniería. Centro de Estudios Ambientales Integrados; ArgentinaFil: González Polo, Marina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: González Polo, Marina. Universidad Nacional del Comahue. Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA); ArgentinaFil: Chaves, Jimena E. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Austral de Investigaciones Científicas (CADIC). Laboratorio de Recursos Agroforestales; ArgentinaFil: Cellini, Juan M. Universidad Nacional de La Plata. Laboratorio de Investigaciones en Maderas (LIMAD); ArgentinaFil: Lencinas, María V. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Austral de Investigaciones Científicas (CADIC). Laboratorio de Recursos Agroforestales; ArgentinaFil: Radeloff, Volker C. University of Wisconsin. Department of Forest and Wildlife Ecology. SILVIS Lab.; Estados UnidosFil: Pidgeon, Anna M. University of Wisconsin. Department of Forest and Wildlife Ecology. SILVIS Lab.; Estados UnidosFil: Peri, Pablo Luis. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Santa Cruz; Argentina.Fil: Peri, Pablo Luis. Universidad Nacional de la Patagonia Austral; Argentina.Fil: Peri, Pablo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Multidisciplinary Digital Publishing Institute (MDPI)2022-11-15T10:36:43Z2022-11-15T10:36:43Z2022-11-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12123/13417https://www.mdpi.com/2072-4292/14/22/5702Martínez Pastur, G.; Aravena Acuña, M.-C.; Silveira, E.M.O.; Von Müller, A.; La Manna, L.; González-Polo, M.; Chaves, J.E.; Cellini, J.M.; Lencinas, M.V.; Radeloff, V.C.; et al. Mapping Soil Organic Carbon Content in Patagonian Forests Based on Climate, Topography and Vegetation Metrics from Satellite Imagery. Remote Sens. 2022, 14, 5702. https://doi.org/ 10.3390/rs142257022072-4292https://doi.org/10.3390/rs14225702Remote Sensing 14 : 5702. (2022)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)2025-09-29T13:45:48Zoai:localhost:20.500.12123/13417instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-09-29 13:45:48.381INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse |
dc.title.none.fl_str_mv |
Mapping soil organic carbon content in Patagonian forests based on climate, topography and vegetation metrics from satellite imagery |
title |
Mapping soil organic carbon content in Patagonian forests based on climate, topography and vegetation metrics from satellite imagery |
spellingShingle |
Mapping soil organic carbon content in Patagonian forests based on climate, topography and vegetation metrics from satellite imagery Martínez Pastur, Guillermo José Soil Organic Carbon Primary Forests Satellite Imagery Carbono Orgánico del Suelo Bosque Primario Imágenes por Satélites Landsat-8 Región Patagónica Dynamic Habitat Indices Bosques Nativos |
title_short |
Mapping soil organic carbon content in Patagonian forests based on climate, topography and vegetation metrics from satellite imagery |
title_full |
Mapping soil organic carbon content in Patagonian forests based on climate, topography and vegetation metrics from satellite imagery |
title_fullStr |
Mapping soil organic carbon content in Patagonian forests based on climate, topography and vegetation metrics from satellite imagery |
title_full_unstemmed |
Mapping soil organic carbon content in Patagonian forests based on climate, topography and vegetation metrics from satellite imagery |
title_sort |
Mapping soil organic carbon content in Patagonian forests based on climate, topography and vegetation metrics from satellite imagery |
dc.creator.none.fl_str_mv |
Martínez Pastur, Guillermo José Aravena Acuña, Marie Claire Silveira, Eduarda M.O. Von Müller, Axel La Manna, Ludmila González Polo, Marina Chaves, Jimena Elizabeth Cellini, Juan Manuel Lencinas, María Vanessa Radeloff, Volker C. Pidgeon, Anna Michle Peri, Pablo Luis |
author |
Martínez Pastur, Guillermo José |
author_facet |
Martínez Pastur, Guillermo José Aravena Acuña, Marie Claire Silveira, Eduarda M.O. Von Müller, Axel La Manna, Ludmila González Polo, Marina Chaves, Jimena Elizabeth Cellini, Juan Manuel Lencinas, María Vanessa Radeloff, Volker C. Pidgeon, Anna Michle Peri, Pablo Luis |
author_role |
author |
author2 |
Aravena Acuña, Marie Claire Silveira, Eduarda M.O. Von Müller, Axel La Manna, Ludmila González Polo, Marina Chaves, Jimena Elizabeth Cellini, Juan Manuel Lencinas, María Vanessa Radeloff, Volker C. Pidgeon, Anna Michle Peri, Pablo Luis |
author2_role |
author author author author author author author author author author author |
dc.subject.none.fl_str_mv |
Soil Organic Carbon Primary Forests Satellite Imagery Carbono Orgánico del Suelo Bosque Primario Imágenes por Satélites Landsat-8 Región Patagónica Dynamic Habitat Indices Bosques Nativos |
topic |
Soil Organic Carbon Primary Forests Satellite Imagery Carbono Orgánico del Suelo Bosque Primario Imágenes por Satélites Landsat-8 Región Patagónica Dynamic Habitat Indices Bosques Nativos |
dc.description.none.fl_txt_mv |
Soil organic carbon (SOC) content supports several ecosystem services. Quantifying SOC requires: (i) accurate C estimates of forest components, and (ii) soil estimates. However, SOC is difficult to measure, so predictive models are needed. Our objective was to model SOC stocks within 30 cm depth in Patagonian forests based on climatic, topographic and vegetation productivity measures from satellite images, including Dynamic Habitat Indices and Land Surface Temperature derived from Landsat-8. We used data from 1320 stands of different forest types in Patagonia, and random forest regression to map SOC. The model captured SOC variability well (R2 = 0.60, RMSE = 22.1%), considering the huge latitudinal extension (36.4◦ to 55.1◦ SL) and the great diversity of forest types. Mean SOC was 134.4 ton C ha−1 ± 25.2, totaling 404.2 million ton C across Patagonia. Overall, SOC values were highest in valleys of the Andes mountains and in southern Tierra del Fuego, ranging from 53.5 to 277.8 ton C ha−1 for the whole Patagonia region. Soil organic carbon is a metric relevant to many applications, connecting major issues such as forest management, conservation, and livestock production, and having spatially explicit estimates of SOC enables managers to fulfil the international agreements that Argentina has joined. EEA Esquel Fil: Martínez Pastur, Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Austral de Investigaciones Científicas (CADIC). Laboratorio de Recursos Agroforestales; Argentina Fil: Aravena Acuña, Marie Claire. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Austral de Investigaciones Científicas (CADIC). Laboratorio de Recursos Agroforestales; Argentina Fil: Silveira, Eduarda M. O. University of Wisconsin. Department of Forest and Wildlife Ecology. SILVIS Lab.; Estados Unidos Fil: von Müller, Axel. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agroforestal Esquel; Argentina Fil: La Manna, Ludmila. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: La Manna, Ludmila. Universidad Nacional de la Patagonia San Juan Bosco. Facultad de Ingeniería. Centro de Estudios Ambientales Integrados; Argentina Fil: González Polo, Marina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: González Polo, Marina. Universidad Nacional del Comahue. Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA); Argentina Fil: Chaves, Jimena E. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Austral de Investigaciones Científicas (CADIC). Laboratorio de Recursos Agroforestales; Argentina Fil: Cellini, Juan M. Universidad Nacional de La Plata. Laboratorio de Investigaciones en Maderas (LIMAD); Argentina Fil: Lencinas, María V. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Austral de Investigaciones Científicas (CADIC). Laboratorio de Recursos Agroforestales; Argentina Fil: Radeloff, Volker C. University of Wisconsin. Department of Forest and Wildlife Ecology. SILVIS Lab.; Estados Unidos Fil: Pidgeon, Anna M. University of Wisconsin. Department of Forest and Wildlife Ecology. SILVIS Lab.; Estados Unidos Fil: Peri, Pablo Luis. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Santa Cruz; Argentina. Fil: Peri, Pablo Luis. Universidad Nacional de la Patagonia Austral; Argentina. Fil: Peri, Pablo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. |
description |
Soil organic carbon (SOC) content supports several ecosystem services. Quantifying SOC requires: (i) accurate C estimates of forest components, and (ii) soil estimates. However, SOC is difficult to measure, so predictive models are needed. Our objective was to model SOC stocks within 30 cm depth in Patagonian forests based on climatic, topographic and vegetation productivity measures from satellite images, including Dynamic Habitat Indices and Land Surface Temperature derived from Landsat-8. We used data from 1320 stands of different forest types in Patagonia, and random forest regression to map SOC. The model captured SOC variability well (R2 = 0.60, RMSE = 22.1%), considering the huge latitudinal extension (36.4◦ to 55.1◦ SL) and the great diversity of forest types. Mean SOC was 134.4 ton C ha−1 ± 25.2, totaling 404.2 million ton C across Patagonia. Overall, SOC values were highest in valleys of the Andes mountains and in southern Tierra del Fuego, ranging from 53.5 to 277.8 ton C ha−1 for the whole Patagonia region. Soil organic carbon is a metric relevant to many applications, connecting major issues such as forest management, conservation, and livestock production, and having spatially explicit estimates of SOC enables managers to fulfil the international agreements that Argentina has joined. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-11-15T10:36:43Z 2022-11-15T10:36:43Z 2022-11-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12123/13417 https://www.mdpi.com/2072-4292/14/22/5702 Martínez Pastur, G.; Aravena Acuña, M.-C.; Silveira, E.M.O.; Von Müller, A.; La Manna, L.; González-Polo, M.; Chaves, J.E.; Cellini, J.M.; Lencinas, M.V.; Radeloff, V.C.; et al. Mapping Soil Organic Carbon Content in Patagonian Forests Based on Climate, Topography and Vegetation Metrics from Satellite Imagery. Remote Sens. 2022, 14, 5702. https://doi.org/ 10.3390/rs14225702 2072-4292 https://doi.org/10.3390/rs14225702 |
url |
http://hdl.handle.net/20.500.12123/13417 https://www.mdpi.com/2072-4292/14/22/5702 https://doi.org/10.3390/rs14225702 |
identifier_str_mv |
Martínez Pastur, G.; Aravena Acuña, M.-C.; Silveira, E.M.O.; Von Müller, A.; La Manna, L.; González-Polo, M.; Chaves, J.E.; Cellini, J.M.; Lencinas, M.V.; Radeloff, V.C.; et al. Mapping Soil Organic Carbon Content in Patagonian Forests Based on Climate, Topography and Vegetation Metrics from Satellite Imagery. Remote Sens. 2022, 14, 5702. https://doi.org/ 10.3390/rs14225702 2072-4292 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Multidisciplinary Digital Publishing Institute (MDPI) |
publisher.none.fl_str_mv |
Multidisciplinary Digital Publishing Institute (MDPI) |
dc.source.none.fl_str_mv |
Remote Sensing 14 : 5702. (2022) reponame:INTA Digital (INTA) instname:Instituto Nacional de Tecnología Agropecuaria |
reponame_str |
INTA Digital (INTA) |
collection |
INTA Digital (INTA) |
instname_str |
Instituto Nacional de Tecnología Agropecuaria |
repository.name.fl_str_mv |
INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria |
repository.mail.fl_str_mv |
tripaldi.nicolas@inta.gob.ar |
_version_ |
1844619171464216576 |
score |
12.559606 |