Recent Land Use and Land Cover Change Dynamics in the Gran Chaco Americano
- Autores
- Banchero, Santiago; De Abelleyra, Diego; Veron, Santiago Ramón; Mosciaro, Maria Jesus; Arévalos, Fabiana; Volante, Jose Norberto
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Trabajo presentado al 2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS 2020), 22–26 March 2020, Santiago, Chile.
Land transformation is one of the most significant human changes on the Earth’s surface processes. Therefore, land use land cover time series are a key input for environmental monitoring, natural resources management, territorial planning enforcement at national scale. We here capitalize from the MapBiomas initiative to characterize land use land cover (LULC) change in the Gran Chaco between 2010 and 2017. Specifically we sought to a) quantify annual changes in the main LULC classes; b) identify the main LULC transitions and c) relate these transitions to current land use policies. Within the MapBiomas project, Landsat based annual maps depicting natural woody vegetation, natural herbaceous vegetation, dispersed natural vegetation, cropland, pastures, bare areas and water. We used Random Forest machine learning algorithms trained by samples produced by visual interpretation of high resolution images. Annual overall accuracy ranged from 0,73 to 0,74. Our results showed that, between 2010 and 2017, agriculture and pasture lands increased ca. 3.7 Mha while natural forestry decreased by 2.3 Mha. Transitions from forests to agriculture accounted for 1.14% of the overall deforestation while 86% was associated to pastures and natural herbaceous vegetation. In Argentina, forest loss occurred primarily (39%) on areas non considered by the territorial planning Law, followed by medium (33%), high (19%) and low (9%) conservation priority classes. These results illustrate the potential contribution of remote sensing to characterize complex human environmental interactions occurring over extended areas and timeframes.
Estación Experimental Agropecuaria Salta
Fil: Banchero, Santiago. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Clima y Agua; Argentina
Fil: De Abelleyra, Diego. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Clima y Agua; Argentina
Fil: Veron, Santiago Ramón. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Clima y Agua; Argentina.
Fil: Mosciaro, Maria Jesus. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Salta; Argentina
Fil: Arévalos, Fabiana. Asociación Guyra Paraguay; Paraguay
Fil: Volante, José Norberto. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Salta; Argentina - Fuente
- The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3/W12-2020 (2020)
- Materia
-
Utilización de la Tierra
Alteración de la Cubierta Vegetal
Land Use
Land Cover Change
Región Chaqueña - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Instituto Nacional de Tecnología Agropecuaria
- OAI Identificador
- oai:localhost:20.500.12123/14595
Ver los metadatos del registro completo
id |
INTADig_b534d19327d0ae87a564bda0e881d961 |
---|---|
oai_identifier_str |
oai:localhost:20.500.12123/14595 |
network_acronym_str |
INTADig |
repository_id_str |
l |
network_name_str |
INTA Digital (INTA) |
spelling |
Recent Land Use and Land Cover Change Dynamics in the Gran Chaco AmericanoBanchero, SantiagoDe Abelleyra, DiegoVeron, Santiago RamónMosciaro, Maria JesusArévalos, FabianaVolante, Jose NorbertoUtilización de la TierraAlteración de la Cubierta VegetalLand UseLand Cover ChangeRegión ChaqueñaTrabajo presentado al 2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS 2020), 22–26 March 2020, Santiago, Chile.Land transformation is one of the most significant human changes on the Earth’s surface processes. Therefore, land use land cover time series are a key input for environmental monitoring, natural resources management, territorial planning enforcement at national scale. We here capitalize from the MapBiomas initiative to characterize land use land cover (LULC) change in the Gran Chaco between 2010 and 2017. Specifically we sought to a) quantify annual changes in the main LULC classes; b) identify the main LULC transitions and c) relate these transitions to current land use policies. Within the MapBiomas project, Landsat based annual maps depicting natural woody vegetation, natural herbaceous vegetation, dispersed natural vegetation, cropland, pastures, bare areas and water. We used Random Forest machine learning algorithms trained by samples produced by visual interpretation of high resolution images. Annual overall accuracy ranged from 0,73 to 0,74. Our results showed that, between 2010 and 2017, agriculture and pasture lands increased ca. 3.7 Mha while natural forestry decreased by 2.3 Mha. Transitions from forests to agriculture accounted for 1.14% of the overall deforestation while 86% was associated to pastures and natural herbaceous vegetation. In Argentina, forest loss occurred primarily (39%) on areas non considered by the territorial planning Law, followed by medium (33%), high (19%) and low (9%) conservation priority classes. These results illustrate the potential contribution of remote sensing to characterize complex human environmental interactions occurring over extended areas and timeframes.Estación Experimental Agropecuaria SaltaFil: Banchero, Santiago. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Clima y Agua; ArgentinaFil: De Abelleyra, Diego. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Clima y Agua; ArgentinaFil: Veron, Santiago Ramón. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Clima y Agua; Argentina.Fil: Mosciaro, Maria Jesus. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Salta; ArgentinaFil: Arévalos, Fabiana. Asociación Guyra Paraguay; ParaguayFil: Volante, José Norberto. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Salta; ArgentinaInternational Society of Photogrammetry and Remote Sensing2023-04-26T19:56:47Z2023-04-26T19:56:47Z2020-03-22info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12123/14595https://isprs-archives.copernicus.org/articles/XLII-3-W12-2020/369/2020/https://doi.org/10.5194/isprs-archives-XLII-3-W12-2020-369-2020The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3/W12-2020 (2020)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)2025-09-29T13:45:58Zoai:localhost:20.500.12123/14595instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-09-29 13:45:59.031INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse |
dc.title.none.fl_str_mv |
Recent Land Use and Land Cover Change Dynamics in the Gran Chaco Americano |
title |
Recent Land Use and Land Cover Change Dynamics in the Gran Chaco Americano |
spellingShingle |
Recent Land Use and Land Cover Change Dynamics in the Gran Chaco Americano Banchero, Santiago Utilización de la Tierra Alteración de la Cubierta Vegetal Land Use Land Cover Change Región Chaqueña |
title_short |
Recent Land Use and Land Cover Change Dynamics in the Gran Chaco Americano |
title_full |
Recent Land Use and Land Cover Change Dynamics in the Gran Chaco Americano |
title_fullStr |
Recent Land Use and Land Cover Change Dynamics in the Gran Chaco Americano |
title_full_unstemmed |
Recent Land Use and Land Cover Change Dynamics in the Gran Chaco Americano |
title_sort |
Recent Land Use and Land Cover Change Dynamics in the Gran Chaco Americano |
dc.creator.none.fl_str_mv |
Banchero, Santiago De Abelleyra, Diego Veron, Santiago Ramón Mosciaro, Maria Jesus Arévalos, Fabiana Volante, Jose Norberto |
author |
Banchero, Santiago |
author_facet |
Banchero, Santiago De Abelleyra, Diego Veron, Santiago Ramón Mosciaro, Maria Jesus Arévalos, Fabiana Volante, Jose Norberto |
author_role |
author |
author2 |
De Abelleyra, Diego Veron, Santiago Ramón Mosciaro, Maria Jesus Arévalos, Fabiana Volante, Jose Norberto |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
Utilización de la Tierra Alteración de la Cubierta Vegetal Land Use Land Cover Change Región Chaqueña |
topic |
Utilización de la Tierra Alteración de la Cubierta Vegetal Land Use Land Cover Change Región Chaqueña |
dc.description.none.fl_txt_mv |
Trabajo presentado al 2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS 2020), 22–26 March 2020, Santiago, Chile. Land transformation is one of the most significant human changes on the Earth’s surface processes. Therefore, land use land cover time series are a key input for environmental monitoring, natural resources management, territorial planning enforcement at national scale. We here capitalize from the MapBiomas initiative to characterize land use land cover (LULC) change in the Gran Chaco between 2010 and 2017. Specifically we sought to a) quantify annual changes in the main LULC classes; b) identify the main LULC transitions and c) relate these transitions to current land use policies. Within the MapBiomas project, Landsat based annual maps depicting natural woody vegetation, natural herbaceous vegetation, dispersed natural vegetation, cropland, pastures, bare areas and water. We used Random Forest machine learning algorithms trained by samples produced by visual interpretation of high resolution images. Annual overall accuracy ranged from 0,73 to 0,74. Our results showed that, between 2010 and 2017, agriculture and pasture lands increased ca. 3.7 Mha while natural forestry decreased by 2.3 Mha. Transitions from forests to agriculture accounted for 1.14% of the overall deforestation while 86% was associated to pastures and natural herbaceous vegetation. In Argentina, forest loss occurred primarily (39%) on areas non considered by the territorial planning Law, followed by medium (33%), high (19%) and low (9%) conservation priority classes. These results illustrate the potential contribution of remote sensing to characterize complex human environmental interactions occurring over extended areas and timeframes. Estación Experimental Agropecuaria Salta Fil: Banchero, Santiago. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Clima y Agua; Argentina Fil: De Abelleyra, Diego. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Clima y Agua; Argentina Fil: Veron, Santiago Ramón. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Clima y Agua; Argentina. Fil: Mosciaro, Maria Jesus. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Salta; Argentina Fil: Arévalos, Fabiana. Asociación Guyra Paraguay; Paraguay Fil: Volante, José Norberto. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Salta; Argentina |
description |
Trabajo presentado al 2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS 2020), 22–26 March 2020, Santiago, Chile. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-03-22 2023-04-26T19:56:47Z 2023-04-26T19:56:47Z |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12123/14595 https://isprs-archives.copernicus.org/articles/XLII-3-W12-2020/369/2020/ https://doi.org/10.5194/isprs-archives-XLII-3-W12-2020-369-2020 |
url |
http://hdl.handle.net/20.500.12123/14595 https://isprs-archives.copernicus.org/articles/XLII-3-W12-2020/369/2020/ https://doi.org/10.5194/isprs-archives-XLII-3-W12-2020-369-2020 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
International Society of Photogrammetry and Remote Sensing |
publisher.none.fl_str_mv |
International Society of Photogrammetry and Remote Sensing |
dc.source.none.fl_str_mv |
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3/W12-2020 (2020) reponame:INTA Digital (INTA) instname:Instituto Nacional de Tecnología Agropecuaria |
reponame_str |
INTA Digital (INTA) |
collection |
INTA Digital (INTA) |
instname_str |
Instituto Nacional de Tecnología Agropecuaria |
repository.name.fl_str_mv |
INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria |
repository.mail.fl_str_mv |
tripaldi.nicolas@inta.gob.ar |
_version_ |
1844619176244674560 |
score |
12.559606 |