Metal cation concentrations improve understanding of controls on soil organic carbon across a precipitation by vegetation gradient in the Patagonian Andes
- Autores
- Hodges, Caitlin; Araujo, Patricia Ines; Hess, Laura J.T.; Vivanco, Lucía; Kaye, Jason; Austin, Amy T.
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Tephra-derived soils retain more organic carbon (C) than soils formed from any other parent material, but this C may be sensitive to changes in climate and land use. Here we evaluate the effects of precipitation, temperature, and afforestation on extractable metals and organic C storage in young tephra-derived soils in a temperate climate. We conducted our investigation across five sites in the Patagonian Andes that vary from 250 mm to 2200 mm mean annual precipitation, and 12 to 9.7 ℃ mean annual temperature from east to west. At each of the five sites are paired plots of natural vegetation, varying from grasses and shrubs at the dry sites to closed-canopy forest at the wet, and stands of Pinus ponderosa planted in monocultures 35 years prior to sampling. Previous research at these sites showed that aboveground net primary production and soil organic C increased with rainfall, but total soil organic C content was lower in pine plantations than natural vegetation. Here we assess whether variation in precipitation and vegetation type also affect soil mineral properties that promote soil C stabilization. Soils were collected to the depth of auger refusal and extracted with 0.5 M HCl for 24 h to target the combined exchangeable and adsorbed metals, including secondary short-range-ordered mineral phases and the plant available pools of Mg, Ca, and K. Pine afforestation lowered concentrations of HCl-extractable K (p < 0.1) and Ca (p < 0.01) within the top 0 – 30 cm. Other elements, while not affected by vegetation type, did respond to the rainfall gradient. Al, Si, P, and Mn all increased in the surface soils with increasing rainfall (p < 0.01), suggesting the development of short-range-order volcanic mineral phases that retain nutrients such as P and Mn. The addition of Al and Ca in the linear model to describe soil organic C explained more of the total variance than rainfall and vegetation type alone, indicating the importance of Al complexes and cation (Ca) bridging with secondary minerals to soil C retention. Importantly, the lower concentration of Ca in planted pine soils may signal a long-term decrease in the potential soil C stored in afforested soils due to a lower capacity for cation bridging. Our results show that the chemistry of these young tephra soils is dynamic, responding to both precipitation and afforestation in distinct ways with potential long-term impacts on nutrient cycling and C storage.
EEA Pergamino
Fil: Hodges, Caitlin. University of Oklahoma. School of Geosciences; Estados Unidos
Fil: Araujo, Patricia Inés. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Pergamino. Laboratorio de Suelo; Argentina
Fil: Araujo, Patricia Inés. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Hess, Laura J. T. Universidad de Buenos Aires. Facultad de agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina
Fil: Hess, Laura J. T. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Vivanco, Lucía. Universidad de Buenos Aires. Facultad de agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina
Fil: Vivanco, Lucía. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Kaye, Jason. The Pennsylvania State University. Department of Ecosystem Science and Management; Estados Unidos
Fil: Austin, Amy T. Universidad de Buenos Aires. Facultad de agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina
Fil: Austin, Amy T. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Fuente
- Geoderma 440 : 116718. (December 2023).
- Materia
-
Suelo
Carbono Orgánico del Suelo
Reforestación
Materia Orgánica del Suelo
Soil
Soil Organic Carbon
Reforestation
Soil Organic Matter
Afforestation
Aforestación
Andisol
Tephra
Cation Bridging
Región Patagónica - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Instituto Nacional de Tecnología Agropecuaria
- OAI Identificador
- oai:localhost:20.500.12123/17690
Ver los metadatos del registro completo
id |
INTADig_aa4eac3725ee67028ed750c4ca0c6939 |
---|---|
oai_identifier_str |
oai:localhost:20.500.12123/17690 |
network_acronym_str |
INTADig |
repository_id_str |
l |
network_name_str |
INTA Digital (INTA) |
spelling |
Metal cation concentrations improve understanding of controls on soil organic carbon across a precipitation by vegetation gradient in the Patagonian AndesHodges, CaitlinAraujo, Patricia InesHess, Laura J.T.Vivanco, LucíaKaye, JasonAustin, Amy T.SueloCarbono Orgánico del SueloReforestaciónMateria Orgánica del SueloSoilSoil Organic CarbonReforestationSoil Organic MatterAfforestationAforestaciónAndisolTephraCation BridgingRegión PatagónicaTephra-derived soils retain more organic carbon (C) than soils formed from any other parent material, but this C may be sensitive to changes in climate and land use. Here we evaluate the effects of precipitation, temperature, and afforestation on extractable metals and organic C storage in young tephra-derived soils in a temperate climate. We conducted our investigation across five sites in the Patagonian Andes that vary from 250 mm to 2200 mm mean annual precipitation, and 12 to 9.7 ℃ mean annual temperature from east to west. At each of the five sites are paired plots of natural vegetation, varying from grasses and shrubs at the dry sites to closed-canopy forest at the wet, and stands of Pinus ponderosa planted in monocultures 35 years prior to sampling. Previous research at these sites showed that aboveground net primary production and soil organic C increased with rainfall, but total soil organic C content was lower in pine plantations than natural vegetation. Here we assess whether variation in precipitation and vegetation type also affect soil mineral properties that promote soil C stabilization. Soils were collected to the depth of auger refusal and extracted with 0.5 M HCl for 24 h to target the combined exchangeable and adsorbed metals, including secondary short-range-ordered mineral phases and the plant available pools of Mg, Ca, and K. Pine afforestation lowered concentrations of HCl-extractable K (p < 0.1) and Ca (p < 0.01) within the top 0 – 30 cm. Other elements, while not affected by vegetation type, did respond to the rainfall gradient. Al, Si, P, and Mn all increased in the surface soils with increasing rainfall (p < 0.01), suggesting the development of short-range-order volcanic mineral phases that retain nutrients such as P and Mn. The addition of Al and Ca in the linear model to describe soil organic C explained more of the total variance than rainfall and vegetation type alone, indicating the importance of Al complexes and cation (Ca) bridging with secondary minerals to soil C retention. Importantly, the lower concentration of Ca in planted pine soils may signal a long-term decrease in the potential soil C stored in afforested soils due to a lower capacity for cation bridging. Our results show that the chemistry of these young tephra soils is dynamic, responding to both precipitation and afforestation in distinct ways with potential long-term impacts on nutrient cycling and C storage.EEA PergaminoFil: Hodges, Caitlin. University of Oklahoma. School of Geosciences; Estados UnidosFil: Araujo, Patricia Inés. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Pergamino. Laboratorio de Suelo; ArgentinaFil: Araujo, Patricia Inés. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Hess, Laura J. T. Universidad de Buenos Aires. Facultad de agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; ArgentinaFil: Hess, Laura J. T. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Vivanco, Lucía. Universidad de Buenos Aires. Facultad de agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; ArgentinaFil: Vivanco, Lucía. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Kaye, Jason. The Pennsylvania State University. Department of Ecosystem Science and Management; Estados UnidosFil: Austin, Amy T. Universidad de Buenos Aires. Facultad de agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; ArgentinaFil: Austin, Amy T. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaElsevier2024-05-10T11:25:08Z2024-05-10T11:25:08Z2023-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12123/17690https://www.sciencedirect.com/science/article/pii/S00167061230039560016-70611872-6259https://doi.org/10.1016/j.geoderma.2023.116718Geoderma 440 : 116718. (December 2023).reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)2025-09-04T09:50:21Zoai:localhost:20.500.12123/17690instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-09-04 09:50:22.244INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse |
dc.title.none.fl_str_mv |
Metal cation concentrations improve understanding of controls on soil organic carbon across a precipitation by vegetation gradient in the Patagonian Andes |
title |
Metal cation concentrations improve understanding of controls on soil organic carbon across a precipitation by vegetation gradient in the Patagonian Andes |
spellingShingle |
Metal cation concentrations improve understanding of controls on soil organic carbon across a precipitation by vegetation gradient in the Patagonian Andes Hodges, Caitlin Suelo Carbono Orgánico del Suelo Reforestación Materia Orgánica del Suelo Soil Soil Organic Carbon Reforestation Soil Organic Matter Afforestation Aforestación Andisol Tephra Cation Bridging Región Patagónica |
title_short |
Metal cation concentrations improve understanding of controls on soil organic carbon across a precipitation by vegetation gradient in the Patagonian Andes |
title_full |
Metal cation concentrations improve understanding of controls on soil organic carbon across a precipitation by vegetation gradient in the Patagonian Andes |
title_fullStr |
Metal cation concentrations improve understanding of controls on soil organic carbon across a precipitation by vegetation gradient in the Patagonian Andes |
title_full_unstemmed |
Metal cation concentrations improve understanding of controls on soil organic carbon across a precipitation by vegetation gradient in the Patagonian Andes |
title_sort |
Metal cation concentrations improve understanding of controls on soil organic carbon across a precipitation by vegetation gradient in the Patagonian Andes |
dc.creator.none.fl_str_mv |
Hodges, Caitlin Araujo, Patricia Ines Hess, Laura J.T. Vivanco, Lucía Kaye, Jason Austin, Amy T. |
author |
Hodges, Caitlin |
author_facet |
Hodges, Caitlin Araujo, Patricia Ines Hess, Laura J.T. Vivanco, Lucía Kaye, Jason Austin, Amy T. |
author_role |
author |
author2 |
Araujo, Patricia Ines Hess, Laura J.T. Vivanco, Lucía Kaye, Jason Austin, Amy T. |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
Suelo Carbono Orgánico del Suelo Reforestación Materia Orgánica del Suelo Soil Soil Organic Carbon Reforestation Soil Organic Matter Afforestation Aforestación Andisol Tephra Cation Bridging Región Patagónica |
topic |
Suelo Carbono Orgánico del Suelo Reforestación Materia Orgánica del Suelo Soil Soil Organic Carbon Reforestation Soil Organic Matter Afforestation Aforestación Andisol Tephra Cation Bridging Región Patagónica |
dc.description.none.fl_txt_mv |
Tephra-derived soils retain more organic carbon (C) than soils formed from any other parent material, but this C may be sensitive to changes in climate and land use. Here we evaluate the effects of precipitation, temperature, and afforestation on extractable metals and organic C storage in young tephra-derived soils in a temperate climate. We conducted our investigation across five sites in the Patagonian Andes that vary from 250 mm to 2200 mm mean annual precipitation, and 12 to 9.7 ℃ mean annual temperature from east to west. At each of the five sites are paired plots of natural vegetation, varying from grasses and shrubs at the dry sites to closed-canopy forest at the wet, and stands of Pinus ponderosa planted in monocultures 35 years prior to sampling. Previous research at these sites showed that aboveground net primary production and soil organic C increased with rainfall, but total soil organic C content was lower in pine plantations than natural vegetation. Here we assess whether variation in precipitation and vegetation type also affect soil mineral properties that promote soil C stabilization. Soils were collected to the depth of auger refusal and extracted with 0.5 M HCl for 24 h to target the combined exchangeable and adsorbed metals, including secondary short-range-ordered mineral phases and the plant available pools of Mg, Ca, and K. Pine afforestation lowered concentrations of HCl-extractable K (p < 0.1) and Ca (p < 0.01) within the top 0 – 30 cm. Other elements, while not affected by vegetation type, did respond to the rainfall gradient. Al, Si, P, and Mn all increased in the surface soils with increasing rainfall (p < 0.01), suggesting the development of short-range-order volcanic mineral phases that retain nutrients such as P and Mn. The addition of Al and Ca in the linear model to describe soil organic C explained more of the total variance than rainfall and vegetation type alone, indicating the importance of Al complexes and cation (Ca) bridging with secondary minerals to soil C retention. Importantly, the lower concentration of Ca in planted pine soils may signal a long-term decrease in the potential soil C stored in afforested soils due to a lower capacity for cation bridging. Our results show that the chemistry of these young tephra soils is dynamic, responding to both precipitation and afforestation in distinct ways with potential long-term impacts on nutrient cycling and C storage. EEA Pergamino Fil: Hodges, Caitlin. University of Oklahoma. School of Geosciences; Estados Unidos Fil: Araujo, Patricia Inés. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Pergamino. Laboratorio de Suelo; Argentina Fil: Araujo, Patricia Inés. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Hess, Laura J. T. Universidad de Buenos Aires. Facultad de agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina Fil: Hess, Laura J. T. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Vivanco, Lucía. Universidad de Buenos Aires. Facultad de agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina Fil: Vivanco, Lucía. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Kaye, Jason. The Pennsylvania State University. Department of Ecosystem Science and Management; Estados Unidos Fil: Austin, Amy T. Universidad de Buenos Aires. Facultad de agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina Fil: Austin, Amy T. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
Tephra-derived soils retain more organic carbon (C) than soils formed from any other parent material, but this C may be sensitive to changes in climate and land use. Here we evaluate the effects of precipitation, temperature, and afforestation on extractable metals and organic C storage in young tephra-derived soils in a temperate climate. We conducted our investigation across five sites in the Patagonian Andes that vary from 250 mm to 2200 mm mean annual precipitation, and 12 to 9.7 ℃ mean annual temperature from east to west. At each of the five sites are paired plots of natural vegetation, varying from grasses and shrubs at the dry sites to closed-canopy forest at the wet, and stands of Pinus ponderosa planted in monocultures 35 years prior to sampling. Previous research at these sites showed that aboveground net primary production and soil organic C increased with rainfall, but total soil organic C content was lower in pine plantations than natural vegetation. Here we assess whether variation in precipitation and vegetation type also affect soil mineral properties that promote soil C stabilization. Soils were collected to the depth of auger refusal and extracted with 0.5 M HCl for 24 h to target the combined exchangeable and adsorbed metals, including secondary short-range-ordered mineral phases and the plant available pools of Mg, Ca, and K. Pine afforestation lowered concentrations of HCl-extractable K (p < 0.1) and Ca (p < 0.01) within the top 0 – 30 cm. Other elements, while not affected by vegetation type, did respond to the rainfall gradient. Al, Si, P, and Mn all increased in the surface soils with increasing rainfall (p < 0.01), suggesting the development of short-range-order volcanic mineral phases that retain nutrients such as P and Mn. The addition of Al and Ca in the linear model to describe soil organic C explained more of the total variance than rainfall and vegetation type alone, indicating the importance of Al complexes and cation (Ca) bridging with secondary minerals to soil C retention. Importantly, the lower concentration of Ca in planted pine soils may signal a long-term decrease in the potential soil C stored in afforested soils due to a lower capacity for cation bridging. Our results show that the chemistry of these young tephra soils is dynamic, responding to both precipitation and afforestation in distinct ways with potential long-term impacts on nutrient cycling and C storage. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-12 2024-05-10T11:25:08Z 2024-05-10T11:25:08Z |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12123/17690 https://www.sciencedirect.com/science/article/pii/S0016706123003956 0016-7061 1872-6259 https://doi.org/10.1016/j.geoderma.2023.116718 |
url |
http://hdl.handle.net/20.500.12123/17690 https://www.sciencedirect.com/science/article/pii/S0016706123003956 https://doi.org/10.1016/j.geoderma.2023.116718 |
identifier_str_mv |
0016-7061 1872-6259 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
Geoderma 440 : 116718. (December 2023). reponame:INTA Digital (INTA) instname:Instituto Nacional de Tecnología Agropecuaria |
reponame_str |
INTA Digital (INTA) |
collection |
INTA Digital (INTA) |
instname_str |
Instituto Nacional de Tecnología Agropecuaria |
repository.name.fl_str_mv |
INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria |
repository.mail.fl_str_mv |
tripaldi.nicolas@inta.gob.ar |
_version_ |
1842341421882802176 |
score |
12.623145 |