Metal cation concentrations improve understanding of controls on soil organic carbon across a precipitation by vegetation gradient in the Patagonian Andes

Autores
Hodges, Caitlin; Araujo, Patricia Ines; Hess, Laura J.T.; Vivanco, Lucía; Kaye, Jason; Austin, Amy T.
Año de publicación
2023
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Tephra-derived soils retain more organic carbon (C) than soils formed from any other parent material, but this C may be sensitive to changes in climate and land use. Here we evaluate the effects of precipitation, temperature, and afforestation on extractable metals and organic C storage in young tephra-derived soils in a temperate climate. We conducted our investigation across five sites in the Patagonian Andes that vary from 250 mm to 2200 mm mean annual precipitation, and 12 to 9.7 ℃ mean annual temperature from east to west. At each of the five sites are paired plots of natural vegetation, varying from grasses and shrubs at the dry sites to closed-canopy forest at the wet, and stands of Pinus ponderosa planted in monocultures 35 years prior to sampling. Previous research at these sites showed that aboveground net primary production and soil organic C increased with rainfall, but total soil organic C content was lower in pine plantations than natural vegetation. Here we assess whether variation in precipitation and vegetation type also affect soil mineral properties that promote soil C stabilization. Soils were collected to the depth of auger refusal and extracted with 0.5 M HCl for 24 h to target the combined exchangeable and adsorbed metals, including secondary short-range-ordered mineral phases and the plant available pools of Mg, Ca, and K. Pine afforestation lowered concentrations of HCl-extractable K (p < 0.1) and Ca (p < 0.01) within the top 0 – 30 cm. Other elements, while not affected by vegetation type, did respond to the rainfall gradient. Al, Si, P, and Mn all increased in the surface soils with increasing rainfall (p < 0.01), suggesting the development of short-range-order volcanic mineral phases that retain nutrients such as P and Mn. The addition of Al and Ca in the linear model to describe soil organic C explained more of the total variance than rainfall and vegetation type alone, indicating the importance of Al complexes and cation (Ca) bridging with secondary minerals to soil C retention. Importantly, the lower concentration of Ca in planted pine soils may signal a long-term decrease in the potential soil C stored in afforested soils due to a lower capacity for cation bridging. Our results show that the chemistry of these young tephra soils is dynamic, responding to both precipitation and afforestation in distinct ways with potential long-term impacts on nutrient cycling and C storage.
EEA Pergamino
Fil: Hodges, Caitlin. University of Oklahoma. School of Geosciences; Estados Unidos
Fil: Araujo, Patricia Inés. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Pergamino. Laboratorio de Suelo; Argentina
Fil: Araujo, Patricia Inés. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Hess, Laura J. T. Universidad de Buenos Aires. Facultad de agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina
Fil: Hess, Laura J. T. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Vivanco, Lucía. Universidad de Buenos Aires. Facultad de agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina
Fil: Vivanco, Lucía. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Kaye, Jason. The Pennsylvania State University. Department of Ecosystem Science and Management; Estados Unidos
Fil: Austin, Amy T. Universidad de Buenos Aires. Facultad de agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina
Fil: Austin, Amy T. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fuente
Geoderma 440 : 116718. (December 2023).
Materia
Suelo
Carbono Orgánico del Suelo
Reforestación
Materia Orgánica del Suelo
Soil
Soil Organic Carbon
Reforestation
Soil Organic Matter
Afforestation
Aforestación
Andisol
Tephra
Cation Bridging
Región Patagónica
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
INTA Digital (INTA)
Institución
Instituto Nacional de Tecnología Agropecuaria
OAI Identificador
oai:localhost:20.500.12123/17690

id INTADig_aa4eac3725ee67028ed750c4ca0c6939
oai_identifier_str oai:localhost:20.500.12123/17690
network_acronym_str INTADig
repository_id_str l
network_name_str INTA Digital (INTA)
spelling Metal cation concentrations improve understanding of controls on soil organic carbon across a precipitation by vegetation gradient in the Patagonian AndesHodges, CaitlinAraujo, Patricia InesHess, Laura J.T.Vivanco, LucíaKaye, JasonAustin, Amy T.SueloCarbono Orgánico del SueloReforestaciónMateria Orgánica del SueloSoilSoil Organic CarbonReforestationSoil Organic MatterAfforestationAforestaciónAndisolTephraCation BridgingRegión PatagónicaTephra-derived soils retain more organic carbon (C) than soils formed from any other parent material, but this C may be sensitive to changes in climate and land use. Here we evaluate the effects of precipitation, temperature, and afforestation on extractable metals and organic C storage in young tephra-derived soils in a temperate climate. We conducted our investigation across five sites in the Patagonian Andes that vary from 250 mm to 2200 mm mean annual precipitation, and 12 to 9.7 ℃ mean annual temperature from east to west. At each of the five sites are paired plots of natural vegetation, varying from grasses and shrubs at the dry sites to closed-canopy forest at the wet, and stands of Pinus ponderosa planted in monocultures 35 years prior to sampling. Previous research at these sites showed that aboveground net primary production and soil organic C increased with rainfall, but total soil organic C content was lower in pine plantations than natural vegetation. Here we assess whether variation in precipitation and vegetation type also affect soil mineral properties that promote soil C stabilization. Soils were collected to the depth of auger refusal and extracted with 0.5 M HCl for 24 h to target the combined exchangeable and adsorbed metals, including secondary short-range-ordered mineral phases and the plant available pools of Mg, Ca, and K. Pine afforestation lowered concentrations of HCl-extractable K (p < 0.1) and Ca (p < 0.01) within the top 0 – 30 cm. Other elements, while not affected by vegetation type, did respond to the rainfall gradient. Al, Si, P, and Mn all increased in the surface soils with increasing rainfall (p < 0.01), suggesting the development of short-range-order volcanic mineral phases that retain nutrients such as P and Mn. The addition of Al and Ca in the linear model to describe soil organic C explained more of the total variance than rainfall and vegetation type alone, indicating the importance of Al complexes and cation (Ca) bridging with secondary minerals to soil C retention. Importantly, the lower concentration of Ca in planted pine soils may signal a long-term decrease in the potential soil C stored in afforested soils due to a lower capacity for cation bridging. Our results show that the chemistry of these young tephra soils is dynamic, responding to both precipitation and afforestation in distinct ways with potential long-term impacts on nutrient cycling and C storage.EEA PergaminoFil: Hodges, Caitlin. University of Oklahoma. School of Geosciences; Estados UnidosFil: Araujo, Patricia Inés. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Pergamino. Laboratorio de Suelo; ArgentinaFil: Araujo, Patricia Inés. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Hess, Laura J. T. Universidad de Buenos Aires. Facultad de agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; ArgentinaFil: Hess, Laura J. T. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Vivanco, Lucía. Universidad de Buenos Aires. Facultad de agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; ArgentinaFil: Vivanco, Lucía. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Kaye, Jason. The Pennsylvania State University. Department of Ecosystem Science and Management; Estados UnidosFil: Austin, Amy T. Universidad de Buenos Aires. Facultad de agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; ArgentinaFil: Austin, Amy T. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaElsevier2024-05-10T11:25:08Z2024-05-10T11:25:08Z2023-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12123/17690https://www.sciencedirect.com/science/article/pii/S00167061230039560016-70611872-6259https://doi.org/10.1016/j.geoderma.2023.116718Geoderma 440 : 116718. (December 2023).reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)2025-09-04T09:50:21Zoai:localhost:20.500.12123/17690instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-09-04 09:50:22.244INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse
dc.title.none.fl_str_mv Metal cation concentrations improve understanding of controls on soil organic carbon across a precipitation by vegetation gradient in the Patagonian Andes
title Metal cation concentrations improve understanding of controls on soil organic carbon across a precipitation by vegetation gradient in the Patagonian Andes
spellingShingle Metal cation concentrations improve understanding of controls on soil organic carbon across a precipitation by vegetation gradient in the Patagonian Andes
Hodges, Caitlin
Suelo
Carbono Orgánico del Suelo
Reforestación
Materia Orgánica del Suelo
Soil
Soil Organic Carbon
Reforestation
Soil Organic Matter
Afforestation
Aforestación
Andisol
Tephra
Cation Bridging
Región Patagónica
title_short Metal cation concentrations improve understanding of controls on soil organic carbon across a precipitation by vegetation gradient in the Patagonian Andes
title_full Metal cation concentrations improve understanding of controls on soil organic carbon across a precipitation by vegetation gradient in the Patagonian Andes
title_fullStr Metal cation concentrations improve understanding of controls on soil organic carbon across a precipitation by vegetation gradient in the Patagonian Andes
title_full_unstemmed Metal cation concentrations improve understanding of controls on soil organic carbon across a precipitation by vegetation gradient in the Patagonian Andes
title_sort Metal cation concentrations improve understanding of controls on soil organic carbon across a precipitation by vegetation gradient in the Patagonian Andes
dc.creator.none.fl_str_mv Hodges, Caitlin
Araujo, Patricia Ines
Hess, Laura J.T.
Vivanco, Lucía
Kaye, Jason
Austin, Amy T.
author Hodges, Caitlin
author_facet Hodges, Caitlin
Araujo, Patricia Ines
Hess, Laura J.T.
Vivanco, Lucía
Kaye, Jason
Austin, Amy T.
author_role author
author2 Araujo, Patricia Ines
Hess, Laura J.T.
Vivanco, Lucía
Kaye, Jason
Austin, Amy T.
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv Suelo
Carbono Orgánico del Suelo
Reforestación
Materia Orgánica del Suelo
Soil
Soil Organic Carbon
Reforestation
Soil Organic Matter
Afforestation
Aforestación
Andisol
Tephra
Cation Bridging
Región Patagónica
topic Suelo
Carbono Orgánico del Suelo
Reforestación
Materia Orgánica del Suelo
Soil
Soil Organic Carbon
Reforestation
Soil Organic Matter
Afforestation
Aforestación
Andisol
Tephra
Cation Bridging
Región Patagónica
dc.description.none.fl_txt_mv Tephra-derived soils retain more organic carbon (C) than soils formed from any other parent material, but this C may be sensitive to changes in climate and land use. Here we evaluate the effects of precipitation, temperature, and afforestation on extractable metals and organic C storage in young tephra-derived soils in a temperate climate. We conducted our investigation across five sites in the Patagonian Andes that vary from 250 mm to 2200 mm mean annual precipitation, and 12 to 9.7 ℃ mean annual temperature from east to west. At each of the five sites are paired plots of natural vegetation, varying from grasses and shrubs at the dry sites to closed-canopy forest at the wet, and stands of Pinus ponderosa planted in monocultures 35 years prior to sampling. Previous research at these sites showed that aboveground net primary production and soil organic C increased with rainfall, but total soil organic C content was lower in pine plantations than natural vegetation. Here we assess whether variation in precipitation and vegetation type also affect soil mineral properties that promote soil C stabilization. Soils were collected to the depth of auger refusal and extracted with 0.5 M HCl for 24 h to target the combined exchangeable and adsorbed metals, including secondary short-range-ordered mineral phases and the plant available pools of Mg, Ca, and K. Pine afforestation lowered concentrations of HCl-extractable K (p < 0.1) and Ca (p < 0.01) within the top 0 – 30 cm. Other elements, while not affected by vegetation type, did respond to the rainfall gradient. Al, Si, P, and Mn all increased in the surface soils with increasing rainfall (p < 0.01), suggesting the development of short-range-order volcanic mineral phases that retain nutrients such as P and Mn. The addition of Al and Ca in the linear model to describe soil organic C explained more of the total variance than rainfall and vegetation type alone, indicating the importance of Al complexes and cation (Ca) bridging with secondary minerals to soil C retention. Importantly, the lower concentration of Ca in planted pine soils may signal a long-term decrease in the potential soil C stored in afforested soils due to a lower capacity for cation bridging. Our results show that the chemistry of these young tephra soils is dynamic, responding to both precipitation and afforestation in distinct ways with potential long-term impacts on nutrient cycling and C storage.
EEA Pergamino
Fil: Hodges, Caitlin. University of Oklahoma. School of Geosciences; Estados Unidos
Fil: Araujo, Patricia Inés. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Pergamino. Laboratorio de Suelo; Argentina
Fil: Araujo, Patricia Inés. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Hess, Laura J. T. Universidad de Buenos Aires. Facultad de agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina
Fil: Hess, Laura J. T. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Vivanco, Lucía. Universidad de Buenos Aires. Facultad de agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina
Fil: Vivanco, Lucía. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Kaye, Jason. The Pennsylvania State University. Department of Ecosystem Science and Management; Estados Unidos
Fil: Austin, Amy T. Universidad de Buenos Aires. Facultad de agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina
Fil: Austin, Amy T. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description Tephra-derived soils retain more organic carbon (C) than soils formed from any other parent material, but this C may be sensitive to changes in climate and land use. Here we evaluate the effects of precipitation, temperature, and afforestation on extractable metals and organic C storage in young tephra-derived soils in a temperate climate. We conducted our investigation across five sites in the Patagonian Andes that vary from 250 mm to 2200 mm mean annual precipitation, and 12 to 9.7 ℃ mean annual temperature from east to west. At each of the five sites are paired plots of natural vegetation, varying from grasses and shrubs at the dry sites to closed-canopy forest at the wet, and stands of Pinus ponderosa planted in monocultures 35 years prior to sampling. Previous research at these sites showed that aboveground net primary production and soil organic C increased with rainfall, but total soil organic C content was lower in pine plantations than natural vegetation. Here we assess whether variation in precipitation and vegetation type also affect soil mineral properties that promote soil C stabilization. Soils were collected to the depth of auger refusal and extracted with 0.5 M HCl for 24 h to target the combined exchangeable and adsorbed metals, including secondary short-range-ordered mineral phases and the plant available pools of Mg, Ca, and K. Pine afforestation lowered concentrations of HCl-extractable K (p < 0.1) and Ca (p < 0.01) within the top 0 – 30 cm. Other elements, while not affected by vegetation type, did respond to the rainfall gradient. Al, Si, P, and Mn all increased in the surface soils with increasing rainfall (p < 0.01), suggesting the development of short-range-order volcanic mineral phases that retain nutrients such as P and Mn. The addition of Al and Ca in the linear model to describe soil organic C explained more of the total variance than rainfall and vegetation type alone, indicating the importance of Al complexes and cation (Ca) bridging with secondary minerals to soil C retention. Importantly, the lower concentration of Ca in planted pine soils may signal a long-term decrease in the potential soil C stored in afforested soils due to a lower capacity for cation bridging. Our results show that the chemistry of these young tephra soils is dynamic, responding to both precipitation and afforestation in distinct ways with potential long-term impacts on nutrient cycling and C storage.
publishDate 2023
dc.date.none.fl_str_mv 2023-12
2024-05-10T11:25:08Z
2024-05-10T11:25:08Z
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12123/17690
https://www.sciencedirect.com/science/article/pii/S0016706123003956
0016-7061
1872-6259
https://doi.org/10.1016/j.geoderma.2023.116718
url http://hdl.handle.net/20.500.12123/17690
https://www.sciencedirect.com/science/article/pii/S0016706123003956
https://doi.org/10.1016/j.geoderma.2023.116718
identifier_str_mv 0016-7061
1872-6259
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv Geoderma 440 : 116718. (December 2023).
reponame:INTA Digital (INTA)
instname:Instituto Nacional de Tecnología Agropecuaria
reponame_str INTA Digital (INTA)
collection INTA Digital (INTA)
instname_str Instituto Nacional de Tecnología Agropecuaria
repository.name.fl_str_mv INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria
repository.mail.fl_str_mv tripaldi.nicolas@inta.gob.ar
_version_ 1842341421882802176
score 12.623145