Discriminación de trigo y cebada empleando imágenes satelitales ópticas y radar. Estudio de caso: partido de Coronel Rosales (Argentina)
- Autores
- Marini, Mario Fabian
- Año de publicación
- 2021
- Idioma
- español castellano
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- El partido de Coronel Rosales (Buenos Aires, Argentina) se halla localizado dentro de la región pampeana austral, una de las de mayor relevancia agro productiva del país. En este contexto, el conocimiento de la superficie cultivada adquiere significativa importancia para la posterior planificación agrícola y económica. En tal sentido, la discriminación de cultivos mediante teledetección se dificulta cuando se trata de los de ciclo fenológico muy similar, como el trigo y la cebada. En este estudio se realizó una discriminación de dichos cultivos empleando imágenes de Radar de Apertura Sintética (SAR) Sentinel-1A SLC, imágenes ópticas Sentinel-2 y una combinación de ambos tipos de datos. Se incorporaron medidas de coherencia, textura e intensidad de retrodispersión extraídas de los datos SAR durante el ciclo fenológico completo. Sobre cada escena Sentinel-2 se obtuvo el Índice de Diferencia Normalizada de Vegetación (Normalized Difference Vegetation Index - NDVI). Se emplearon tres algoritmos de clasificación: Máxima Verosimilitud (Maximum Likelihood - MLC), Máquinas de Soporte Vectorial (Support Vector Machines - SVM) y Random Forest (RF). Los mejores resultados se obtuvieron al combinar imágenes ópticas y SAR empleando el clasificador RF. La combinación de las retrodispersiones VV y VH junto a la coherencia y la textura de las imágenes SAR, sumada al apilado de NDVI de imágenes ópticas, arrojó los máximos valores de precisión de la clasificación. El valor de F1 fue de 87.27% para el trigo y de 89.20% para la cebada.
TIn Argentina, the farming industry is considered one of the main economic resources in terms of income and domestic market supply. Thus, the study, inventory, and knowledge of the cultivated surface area are key cornerstones for agricultural and economic planning. Agriculture focuses mainly on cereals such as wheat, barley, maize, oat, and sor-ghum, as well as on oilseeds such as soybeans, sunflower, and peanuts. The most important productive areas of Argentina include the Pampean region, where the Coronel Rosales Department is located (Buenos Aires, Argentina). In this context, the knowledge of the cultivated surface area is particularly important to support agricultural and economic planning. In this regard, crop discrimination based on remote sensing is difficult for crops with highly similar phenological cycles, as is the case of wheat and barley. To address this issue, the standard satellite image classification methods have been based on the spectral response of each individual pixel using optical images. Crops are also monitored using Synthetic Aperture Ra-dar (SAR) images; these have several advantages over optical imagery because radio waves are unaffected by the presence of clouds. This provides the benefit of re-cording satellite data throughout the whole phenological cycle.
EEA Bordenave
Fil: Marini, Mario Fabián. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bordenave. Agencia Extensión Rural Bahía Blanca; Argentina. - Fuente
- Investigaciones Geográficas 104 : e60173 (2021)
- Materia
-
Trigo
Cebada
Teledetección
Imágenes por Satélites
Imágenes por Radar
Argentina
Wheat
Barley
Remote Sensing
Satellite Imagery
Radar Imagery - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Instituto Nacional de Tecnología Agropecuaria
- OAI Identificador
- oai:localhost:20.500.12123/9485
Ver los metadatos del registro completo
id |
INTADig_9503fa9745dc0668c777066210cd15ca |
---|---|
oai_identifier_str |
oai:localhost:20.500.12123/9485 |
network_acronym_str |
INTADig |
repository_id_str |
l |
network_name_str |
INTA Digital (INTA) |
spelling |
Discriminación de trigo y cebada empleando imágenes satelitales ópticas y radar. Estudio de caso: partido de Coronel Rosales (Argentina)Wheat and barley discrimination using sar and optical satellite images. Case study: Coronel Rosales department (Argentina)Marini, Mario FabianTrigoCebadaTeledetecciónImágenes por SatélitesImágenes por RadarArgentinaWheatBarleyRemote SensingSatellite ImageryRadar ImageryEl partido de Coronel Rosales (Buenos Aires, Argentina) se halla localizado dentro de la región pampeana austral, una de las de mayor relevancia agro productiva del país. En este contexto, el conocimiento de la superficie cultivada adquiere significativa importancia para la posterior planificación agrícola y económica. En tal sentido, la discriminación de cultivos mediante teledetección se dificulta cuando se trata de los de ciclo fenológico muy similar, como el trigo y la cebada. En este estudio se realizó una discriminación de dichos cultivos empleando imágenes de Radar de Apertura Sintética (SAR) Sentinel-1A SLC, imágenes ópticas Sentinel-2 y una combinación de ambos tipos de datos. Se incorporaron medidas de coherencia, textura e intensidad de retrodispersión extraídas de los datos SAR durante el ciclo fenológico completo. Sobre cada escena Sentinel-2 se obtuvo el Índice de Diferencia Normalizada de Vegetación (Normalized Difference Vegetation Index - NDVI). Se emplearon tres algoritmos de clasificación: Máxima Verosimilitud (Maximum Likelihood - MLC), Máquinas de Soporte Vectorial (Support Vector Machines - SVM) y Random Forest (RF). Los mejores resultados se obtuvieron al combinar imágenes ópticas y SAR empleando el clasificador RF. La combinación de las retrodispersiones VV y VH junto a la coherencia y la textura de las imágenes SAR, sumada al apilado de NDVI de imágenes ópticas, arrojó los máximos valores de precisión de la clasificación. El valor de F1 fue de 87.27% para el trigo y de 89.20% para la cebada.TIn Argentina, the farming industry is considered one of the main economic resources in terms of income and domestic market supply. Thus, the study, inventory, and knowledge of the cultivated surface area are key cornerstones for agricultural and economic planning. Agriculture focuses mainly on cereals such as wheat, barley, maize, oat, and sor-ghum, as well as on oilseeds such as soybeans, sunflower, and peanuts. The most important productive areas of Argentina include the Pampean region, where the Coronel Rosales Department is located (Buenos Aires, Argentina). In this context, the knowledge of the cultivated surface area is particularly important to support agricultural and economic planning. In this regard, crop discrimination based on remote sensing is difficult for crops with highly similar phenological cycles, as is the case of wheat and barley. To address this issue, the standard satellite image classification methods have been based on the spectral response of each individual pixel using optical images. Crops are also monitored using Synthetic Aperture Ra-dar (SAR) images; these have several advantages over optical imagery because radio waves are unaffected by the presence of clouds. This provides the benefit of re-cording satellite data throughout the whole phenological cycle.EEA BordenaveFil: Marini, Mario Fabián. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bordenave. Agencia Extensión Rural Bahía Blanca; Argentina.Instituto de Geografía, Universidad Nacional Autónoma de México2021-06-03T11:01:46Z2021-06-03T11:01:46Z2021-02-16info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://www.investigacionesgeograficas.unam.mx/index.php/rig/article/view/60173http://hdl.handle.net/20.500.12123/94852448-7279https://doi.org/10.14350/rig.60173Investigaciones Geográficas 104 : e60173 (2021)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaspainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)2025-10-16T09:30:06Zoai:localhost:20.500.12123/9485instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-10-16 09:30:07.13INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse |
dc.title.none.fl_str_mv |
Discriminación de trigo y cebada empleando imágenes satelitales ópticas y radar. Estudio de caso: partido de Coronel Rosales (Argentina) Wheat and barley discrimination using sar and optical satellite images. Case study: Coronel Rosales department (Argentina) |
title |
Discriminación de trigo y cebada empleando imágenes satelitales ópticas y radar. Estudio de caso: partido de Coronel Rosales (Argentina) |
spellingShingle |
Discriminación de trigo y cebada empleando imágenes satelitales ópticas y radar. Estudio de caso: partido de Coronel Rosales (Argentina) Marini, Mario Fabian Trigo Cebada Teledetección Imágenes por Satélites Imágenes por Radar Argentina Wheat Barley Remote Sensing Satellite Imagery Radar Imagery |
title_short |
Discriminación de trigo y cebada empleando imágenes satelitales ópticas y radar. Estudio de caso: partido de Coronel Rosales (Argentina) |
title_full |
Discriminación de trigo y cebada empleando imágenes satelitales ópticas y radar. Estudio de caso: partido de Coronel Rosales (Argentina) |
title_fullStr |
Discriminación de trigo y cebada empleando imágenes satelitales ópticas y radar. Estudio de caso: partido de Coronel Rosales (Argentina) |
title_full_unstemmed |
Discriminación de trigo y cebada empleando imágenes satelitales ópticas y radar. Estudio de caso: partido de Coronel Rosales (Argentina) |
title_sort |
Discriminación de trigo y cebada empleando imágenes satelitales ópticas y radar. Estudio de caso: partido de Coronel Rosales (Argentina) |
dc.creator.none.fl_str_mv |
Marini, Mario Fabian |
author |
Marini, Mario Fabian |
author_facet |
Marini, Mario Fabian |
author_role |
author |
dc.subject.none.fl_str_mv |
Trigo Cebada Teledetección Imágenes por Satélites Imágenes por Radar Argentina Wheat Barley Remote Sensing Satellite Imagery Radar Imagery |
topic |
Trigo Cebada Teledetección Imágenes por Satélites Imágenes por Radar Argentina Wheat Barley Remote Sensing Satellite Imagery Radar Imagery |
dc.description.none.fl_txt_mv |
El partido de Coronel Rosales (Buenos Aires, Argentina) se halla localizado dentro de la región pampeana austral, una de las de mayor relevancia agro productiva del país. En este contexto, el conocimiento de la superficie cultivada adquiere significativa importancia para la posterior planificación agrícola y económica. En tal sentido, la discriminación de cultivos mediante teledetección se dificulta cuando se trata de los de ciclo fenológico muy similar, como el trigo y la cebada. En este estudio se realizó una discriminación de dichos cultivos empleando imágenes de Radar de Apertura Sintética (SAR) Sentinel-1A SLC, imágenes ópticas Sentinel-2 y una combinación de ambos tipos de datos. Se incorporaron medidas de coherencia, textura e intensidad de retrodispersión extraídas de los datos SAR durante el ciclo fenológico completo. Sobre cada escena Sentinel-2 se obtuvo el Índice de Diferencia Normalizada de Vegetación (Normalized Difference Vegetation Index - NDVI). Se emplearon tres algoritmos de clasificación: Máxima Verosimilitud (Maximum Likelihood - MLC), Máquinas de Soporte Vectorial (Support Vector Machines - SVM) y Random Forest (RF). Los mejores resultados se obtuvieron al combinar imágenes ópticas y SAR empleando el clasificador RF. La combinación de las retrodispersiones VV y VH junto a la coherencia y la textura de las imágenes SAR, sumada al apilado de NDVI de imágenes ópticas, arrojó los máximos valores de precisión de la clasificación. El valor de F1 fue de 87.27% para el trigo y de 89.20% para la cebada. TIn Argentina, the farming industry is considered one of the main economic resources in terms of income and domestic market supply. Thus, the study, inventory, and knowledge of the cultivated surface area are key cornerstones for agricultural and economic planning. Agriculture focuses mainly on cereals such as wheat, barley, maize, oat, and sor-ghum, as well as on oilseeds such as soybeans, sunflower, and peanuts. The most important productive areas of Argentina include the Pampean region, where the Coronel Rosales Department is located (Buenos Aires, Argentina). In this context, the knowledge of the cultivated surface area is particularly important to support agricultural and economic planning. In this regard, crop discrimination based on remote sensing is difficult for crops with highly similar phenological cycles, as is the case of wheat and barley. To address this issue, the standard satellite image classification methods have been based on the spectral response of each individual pixel using optical images. Crops are also monitored using Synthetic Aperture Ra-dar (SAR) images; these have several advantages over optical imagery because radio waves are unaffected by the presence of clouds. This provides the benefit of re-cording satellite data throughout the whole phenological cycle. EEA Bordenave Fil: Marini, Mario Fabián. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bordenave. Agencia Extensión Rural Bahía Blanca; Argentina. |
description |
El partido de Coronel Rosales (Buenos Aires, Argentina) se halla localizado dentro de la región pampeana austral, una de las de mayor relevancia agro productiva del país. En este contexto, el conocimiento de la superficie cultivada adquiere significativa importancia para la posterior planificación agrícola y económica. En tal sentido, la discriminación de cultivos mediante teledetección se dificulta cuando se trata de los de ciclo fenológico muy similar, como el trigo y la cebada. En este estudio se realizó una discriminación de dichos cultivos empleando imágenes de Radar de Apertura Sintética (SAR) Sentinel-1A SLC, imágenes ópticas Sentinel-2 y una combinación de ambos tipos de datos. Se incorporaron medidas de coherencia, textura e intensidad de retrodispersión extraídas de los datos SAR durante el ciclo fenológico completo. Sobre cada escena Sentinel-2 se obtuvo el Índice de Diferencia Normalizada de Vegetación (Normalized Difference Vegetation Index - NDVI). Se emplearon tres algoritmos de clasificación: Máxima Verosimilitud (Maximum Likelihood - MLC), Máquinas de Soporte Vectorial (Support Vector Machines - SVM) y Random Forest (RF). Los mejores resultados se obtuvieron al combinar imágenes ópticas y SAR empleando el clasificador RF. La combinación de las retrodispersiones VV y VH junto a la coherencia y la textura de las imágenes SAR, sumada al apilado de NDVI de imágenes ópticas, arrojó los máximos valores de precisión de la clasificación. El valor de F1 fue de 87.27% para el trigo y de 89.20% para la cebada. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-06-03T11:01:46Z 2021-06-03T11:01:46Z 2021-02-16 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://www.investigacionesgeograficas.unam.mx/index.php/rig/article/view/60173 http://hdl.handle.net/20.500.12123/9485 2448-7279 https://doi.org/10.14350/rig.60173 |
url |
http://www.investigacionesgeograficas.unam.mx/index.php/rig/article/view/60173 http://hdl.handle.net/20.500.12123/9485 https://doi.org/10.14350/rig.60173 |
identifier_str_mv |
2448-7279 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Instituto de Geografía, Universidad Nacional Autónoma de México |
publisher.none.fl_str_mv |
Instituto de Geografía, Universidad Nacional Autónoma de México |
dc.source.none.fl_str_mv |
Investigaciones Geográficas 104 : e60173 (2021) reponame:INTA Digital (INTA) instname:Instituto Nacional de Tecnología Agropecuaria |
reponame_str |
INTA Digital (INTA) |
collection |
INTA Digital (INTA) |
instname_str |
Instituto Nacional de Tecnología Agropecuaria |
repository.name.fl_str_mv |
INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria |
repository.mail.fl_str_mv |
tripaldi.nicolas@inta.gob.ar |
_version_ |
1846143535651225600 |
score |
12.712165 |