Archetypal classification of vegetation dynamics of a humid subtropical forest region from North-East Argentina

Autores
Díaz Villa, M. Virginia E.; Cristiano, Piedad M.; Easdale, Marcos Horacio; Bruzzone, Octavio Augusto
Año de publicación
2023
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
With the aim of studying the primary productivity dynamics of subtropical forests with different degrees of intervention or change due to human intervention, we classify the ecosystems of an area in northeastern Argentina, corresponding to a humid subtropical region, according to their temporal variability. A 22-year time series, ranging from 2000 to 2022, of MODIS EVI was assembled into a spatiotemporal cube, and pixels were classified by an archetypal analysis applied to the frequency components of a Fourier power spectrum. Then the most representative pixels of this classification (archetypoids) were selected. A wavelet decomposition was performed on these archetypoids to identify temporal changes in the frequency composition of the time series, and an ARIMA model to identify changes in the noise pattern of the series. Finally, a distributed-lag model with meteorological variables, was applied to these time series to relate the dynamics of the archetypes to the local climate. A stepwise procedure using Gaussian processes for error and autocorrelation and multiple regressions to determine any univariate relationship between meteorological variables and EVI. The meteorological variables considered were temperature, rainfall, and potential evapotranspiration (PET). The procedure started with a null model with white noise, then Gaussian processes were gradually added to model the errors, and then the explanatory variables, which were filtered moving average time series of the meteorological variables. The interaction between the explanatory variables was assumed to be the minimum EVI of the predicted values of each variable according to Lieibig's law of minimum. The procedure was applied as the BIC decreased to find the optimal model. In this study area, three different archetypes were sufficient to describe most of the variability in the time series matrix. Archetype 1 was characterized by woody plantations of exotic species such as pines, yerba mate and tea, archetype 2 by native forests, and archetype 3 represented a mosaic of forests and agriculture/pasture. The analysis of climate and archetypes indicated that archetype 2 had the highest mean EVI values (i.e., primary productivity), followed by archetype 1 and lastly archetype 3. Also, it showed that all three archetypes responded to the same combination of climate variables (temperature and PET), with varying degrees of sensitivity to each variable. Archetype 2 was the least sensitive to changes in these variables, archetype 1 was more sensitive to PET, and archetype 3 was more sensitive to temperature, while also exhibiting the least response time.
EEA Bariloche
Fil: Díaz Villa, M. Virginia E. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ecología, Genética y Evolución; Argentina
Fil: Díaz Villa, M. Virginia E. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Laboratorio de Ecología Funcional. Instituto de Ecología, Genética y Evolución; Argentina
Fil: Díaz Villa, M. Virginia E. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución; Argentina
Fil: Cristiano, Piedad M. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ecología, Genética y Evolución; Argentina
Fil: Cristiano, Piedad M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Laboratorio de Ecología Funcional. Instituto de Ecología, Genética y Evolución; Argentina
Fil: Cristiano, Piedad M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución; Argentina
Fil: Easdale, Marcos Horacio. Instituto Nacional de Tecnologia Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentina
Fil: Easdale, Marcos Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentina
Fil: Bruzzone Octavio Augusto. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentina
Fil: Bruzzone Octavio Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentina
Fuente
Remote Sensing Applications: Society and Environment 30 : 100966. (April 2023)
Materia
Vegetación
Clasificación
Ecosistema
Bosques
Zona Subtropical
Argentina
Vegetation
Classification
Ecosystems
Forests
Subtropical Zones
Nivel de accesibilidad
acceso restringido
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
INTA Digital (INTA)
Institución
Instituto Nacional de Tecnología Agropecuaria
OAI Identificador
oai:localhost:20.500.12123/14708

id INTADig_9223aa51adda7e5b2f3c7cfc2b433c59
oai_identifier_str oai:localhost:20.500.12123/14708
network_acronym_str INTADig
repository_id_str l
network_name_str INTA Digital (INTA)
spelling Archetypal classification of vegetation dynamics of a humid subtropical forest region from North-East ArgentinaDíaz Villa, M. Virginia E.Cristiano, Piedad M.Easdale, Marcos HoracioBruzzone, Octavio AugustoVegetaciónClasificaciónEcosistemaBosquesZona SubtropicalArgentinaVegetationClassificationEcosystemsForestsSubtropical ZonesWith the aim of studying the primary productivity dynamics of subtropical forests with different degrees of intervention or change due to human intervention, we classify the ecosystems of an area in northeastern Argentina, corresponding to a humid subtropical region, according to their temporal variability. A 22-year time series, ranging from 2000 to 2022, of MODIS EVI was assembled into a spatiotemporal cube, and pixels were classified by an archetypal analysis applied to the frequency components of a Fourier power spectrum. Then the most representative pixels of this classification (archetypoids) were selected. A wavelet decomposition was performed on these archetypoids to identify temporal changes in the frequency composition of the time series, and an ARIMA model to identify changes in the noise pattern of the series. Finally, a distributed-lag model with meteorological variables, was applied to these time series to relate the dynamics of the archetypes to the local climate. A stepwise procedure using Gaussian processes for error and autocorrelation and multiple regressions to determine any univariate relationship between meteorological variables and EVI. The meteorological variables considered were temperature, rainfall, and potential evapotranspiration (PET). The procedure started with a null model with white noise, then Gaussian processes were gradually added to model the errors, and then the explanatory variables, which were filtered moving average time series of the meteorological variables. The interaction between the explanatory variables was assumed to be the minimum EVI of the predicted values of each variable according to Lieibig's law of minimum. The procedure was applied as the BIC decreased to find the optimal model. In this study area, three different archetypes were sufficient to describe most of the variability in the time series matrix. Archetype 1 was characterized by woody plantations of exotic species such as pines, yerba mate and tea, archetype 2 by native forests, and archetype 3 represented a mosaic of forests and agriculture/pasture. The analysis of climate and archetypes indicated that archetype 2 had the highest mean EVI values (i.e., primary productivity), followed by archetype 1 and lastly archetype 3. Also, it showed that all three archetypes responded to the same combination of climate variables (temperature and PET), with varying degrees of sensitivity to each variable. Archetype 2 was the least sensitive to changes in these variables, archetype 1 was more sensitive to PET, and archetype 3 was more sensitive to temperature, while also exhibiting the least response time.EEA BarilocheFil: Díaz Villa, M. Virginia E. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ecología, Genética y Evolución; ArgentinaFil: Díaz Villa, M. Virginia E. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Laboratorio de Ecología Funcional. Instituto de Ecología, Genética y Evolución; ArgentinaFil: Díaz Villa, M. Virginia E. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución; ArgentinaFil: Cristiano, Piedad M. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ecología, Genética y Evolución; ArgentinaFil: Cristiano, Piedad M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Laboratorio de Ecología Funcional. Instituto de Ecología, Genética y Evolución; ArgentinaFil: Cristiano, Piedad M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución; ArgentinaFil: Easdale, Marcos Horacio. Instituto Nacional de Tecnologia Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; ArgentinaFil: Easdale, Marcos Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; ArgentinaFil: Bruzzone Octavio Augusto. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; ArgentinaFil: Bruzzone Octavio Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; ArgentinaElsevier2023-07-06T16:03:49Z2023-07-06T16:03:49Z2023-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12123/14708https://www.sciencedirect.com/science/article/pii/S23529385230004842352-9385https://doi.org/10.1016/j.rsase.2023.100966Remote Sensing Applications: Society and Environment 30 : 100966. (April 2023)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología AgropecuariaengArgentina .......... (nation) (World, South America)7006477info:eu-repo/semantics/restrictedAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)2025-10-16T09:31:12Zoai:localhost:20.500.12123/14708instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-10-16 09:31:12.377INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse
dc.title.none.fl_str_mv Archetypal classification of vegetation dynamics of a humid subtropical forest region from North-East Argentina
title Archetypal classification of vegetation dynamics of a humid subtropical forest region from North-East Argentina
spellingShingle Archetypal classification of vegetation dynamics of a humid subtropical forest region from North-East Argentina
Díaz Villa, M. Virginia E.
Vegetación
Clasificación
Ecosistema
Bosques
Zona Subtropical
Argentina
Vegetation
Classification
Ecosystems
Forests
Subtropical Zones
title_short Archetypal classification of vegetation dynamics of a humid subtropical forest region from North-East Argentina
title_full Archetypal classification of vegetation dynamics of a humid subtropical forest region from North-East Argentina
title_fullStr Archetypal classification of vegetation dynamics of a humid subtropical forest region from North-East Argentina
title_full_unstemmed Archetypal classification of vegetation dynamics of a humid subtropical forest region from North-East Argentina
title_sort Archetypal classification of vegetation dynamics of a humid subtropical forest region from North-East Argentina
dc.creator.none.fl_str_mv Díaz Villa, M. Virginia E.
Cristiano, Piedad M.
Easdale, Marcos Horacio
Bruzzone, Octavio Augusto
author Díaz Villa, M. Virginia E.
author_facet Díaz Villa, M. Virginia E.
Cristiano, Piedad M.
Easdale, Marcos Horacio
Bruzzone, Octavio Augusto
author_role author
author2 Cristiano, Piedad M.
Easdale, Marcos Horacio
Bruzzone, Octavio Augusto
author2_role author
author
author
dc.subject.none.fl_str_mv Vegetación
Clasificación
Ecosistema
Bosques
Zona Subtropical
Argentina
Vegetation
Classification
Ecosystems
Forests
Subtropical Zones
topic Vegetación
Clasificación
Ecosistema
Bosques
Zona Subtropical
Argentina
Vegetation
Classification
Ecosystems
Forests
Subtropical Zones
dc.description.none.fl_txt_mv With the aim of studying the primary productivity dynamics of subtropical forests with different degrees of intervention or change due to human intervention, we classify the ecosystems of an area in northeastern Argentina, corresponding to a humid subtropical region, according to their temporal variability. A 22-year time series, ranging from 2000 to 2022, of MODIS EVI was assembled into a spatiotemporal cube, and pixels were classified by an archetypal analysis applied to the frequency components of a Fourier power spectrum. Then the most representative pixels of this classification (archetypoids) were selected. A wavelet decomposition was performed on these archetypoids to identify temporal changes in the frequency composition of the time series, and an ARIMA model to identify changes in the noise pattern of the series. Finally, a distributed-lag model with meteorological variables, was applied to these time series to relate the dynamics of the archetypes to the local climate. A stepwise procedure using Gaussian processes for error and autocorrelation and multiple regressions to determine any univariate relationship between meteorological variables and EVI. The meteorological variables considered were temperature, rainfall, and potential evapotranspiration (PET). The procedure started with a null model with white noise, then Gaussian processes were gradually added to model the errors, and then the explanatory variables, which were filtered moving average time series of the meteorological variables. The interaction between the explanatory variables was assumed to be the minimum EVI of the predicted values of each variable according to Lieibig's law of minimum. The procedure was applied as the BIC decreased to find the optimal model. In this study area, three different archetypes were sufficient to describe most of the variability in the time series matrix. Archetype 1 was characterized by woody plantations of exotic species such as pines, yerba mate and tea, archetype 2 by native forests, and archetype 3 represented a mosaic of forests and agriculture/pasture. The analysis of climate and archetypes indicated that archetype 2 had the highest mean EVI values (i.e., primary productivity), followed by archetype 1 and lastly archetype 3. Also, it showed that all three archetypes responded to the same combination of climate variables (temperature and PET), with varying degrees of sensitivity to each variable. Archetype 2 was the least sensitive to changes in these variables, archetype 1 was more sensitive to PET, and archetype 3 was more sensitive to temperature, while also exhibiting the least response time.
EEA Bariloche
Fil: Díaz Villa, M. Virginia E. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ecología, Genética y Evolución; Argentina
Fil: Díaz Villa, M. Virginia E. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Laboratorio de Ecología Funcional. Instituto de Ecología, Genética y Evolución; Argentina
Fil: Díaz Villa, M. Virginia E. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución; Argentina
Fil: Cristiano, Piedad M. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ecología, Genética y Evolución; Argentina
Fil: Cristiano, Piedad M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Laboratorio de Ecología Funcional. Instituto de Ecología, Genética y Evolución; Argentina
Fil: Cristiano, Piedad M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución; Argentina
Fil: Easdale, Marcos Horacio. Instituto Nacional de Tecnologia Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentina
Fil: Easdale, Marcos Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentina
Fil: Bruzzone Octavio Augusto. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentina
Fil: Bruzzone Octavio Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentina
description With the aim of studying the primary productivity dynamics of subtropical forests with different degrees of intervention or change due to human intervention, we classify the ecosystems of an area in northeastern Argentina, corresponding to a humid subtropical region, according to their temporal variability. A 22-year time series, ranging from 2000 to 2022, of MODIS EVI was assembled into a spatiotemporal cube, and pixels were classified by an archetypal analysis applied to the frequency components of a Fourier power spectrum. Then the most representative pixels of this classification (archetypoids) were selected. A wavelet decomposition was performed on these archetypoids to identify temporal changes in the frequency composition of the time series, and an ARIMA model to identify changes in the noise pattern of the series. Finally, a distributed-lag model with meteorological variables, was applied to these time series to relate the dynamics of the archetypes to the local climate. A stepwise procedure using Gaussian processes for error and autocorrelation and multiple regressions to determine any univariate relationship between meteorological variables and EVI. The meteorological variables considered were temperature, rainfall, and potential evapotranspiration (PET). The procedure started with a null model with white noise, then Gaussian processes were gradually added to model the errors, and then the explanatory variables, which were filtered moving average time series of the meteorological variables. The interaction between the explanatory variables was assumed to be the minimum EVI of the predicted values of each variable according to Lieibig's law of minimum. The procedure was applied as the BIC decreased to find the optimal model. In this study area, three different archetypes were sufficient to describe most of the variability in the time series matrix. Archetype 1 was characterized by woody plantations of exotic species such as pines, yerba mate and tea, archetype 2 by native forests, and archetype 3 represented a mosaic of forests and agriculture/pasture. The analysis of climate and archetypes indicated that archetype 2 had the highest mean EVI values (i.e., primary productivity), followed by archetype 1 and lastly archetype 3. Also, it showed that all three archetypes responded to the same combination of climate variables (temperature and PET), with varying degrees of sensitivity to each variable. Archetype 2 was the least sensitive to changes in these variables, archetype 1 was more sensitive to PET, and archetype 3 was more sensitive to temperature, while also exhibiting the least response time.
publishDate 2023
dc.date.none.fl_str_mv 2023-07-06T16:03:49Z
2023-07-06T16:03:49Z
2023-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12123/14708
https://www.sciencedirect.com/science/article/pii/S2352938523000484
2352-9385
https://doi.org/10.1016/j.rsase.2023.100966
url http://hdl.handle.net/20.500.12123/14708
https://www.sciencedirect.com/science/article/pii/S2352938523000484
https://doi.org/10.1016/j.rsase.2023.100966
identifier_str_mv 2352-9385
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv restrictedAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv Argentina .......... (nation) (World, South America)
7006477
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv Remote Sensing Applications: Society and Environment 30 : 100966. (April 2023)
reponame:INTA Digital (INTA)
instname:Instituto Nacional de Tecnología Agropecuaria
reponame_str INTA Digital (INTA)
collection INTA Digital (INTA)
instname_str Instituto Nacional de Tecnología Agropecuaria
repository.name.fl_str_mv INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria
repository.mail.fl_str_mv tripaldi.nicolas@inta.gob.ar
_version_ 1846143560068366336
score 12.712165