Junglerice (Echinochloa colonaL.) seedling emergence model as a tool to optimize pre-emergent herbicide application
- Autores
- Picapietra, Gabriel; Acciaresi, Horacio Abel
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Junglerice (Echinochloa colona), one of the worst and most problematic weeds globally, causes significant economic losses due to yield loss and control cost increase. Taking into account that this weed emerges in approximately five months - from September to January -, and considering that reducing herbicide use is key in the current intensification of agricultural production systems, the present study was carried out under the hypothesis that there should be an optimal moment for pre-emergent herbicide application to achieve maximum weed control effectiveness and efficiency. Therefore, experiments were carried out from August 2016 to January 2021 in Pergamino, Buenos Aires province, Argentina, using a double-logistic emergence model of junglerice seedlings. Bicyclopyrone plus s-metolachlor, clomazone, and pyroxasulfone plus saflufenacil were applied at different times between 92 and 478 growing degree days (GDDs). Single applications between 348 and 399 GDD were observed to reduce junglerice seedling emergence by 85 99%, depending on the herbicide used. Such a seedling emergence reduction could be a convenient strategy to provide significant weed suppression in the field in combination with a competitive crop and within a sustainable production system. The results of the present study lead to the conclusion that using predictive models for pre-emergent herbicide applications ensures more effective use of herbicides and reduces the amounts of herbicides used and the risks of selecting herbicide-resistant junglerice populations.
EEA Pergamino
Fil: Picapietra, Gabirel. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Pergamino. Departamento de Malezas; Argentina
Fil: Picapietra, Gabirel. Universidad Nacional del Noroeste de la Provincia de Buenos Aires. Escuela de Ciencias Agrarias, Naturales y Ambientales (ECANA); Argentina
Fil: Acciaresi, Horacio. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Pergamino. Departamento de Malezas; Argentina
Fil: Acciaresi, Horacio. Provincia de Buenos Aires. Comisión de Investigaciones Científicas; Argentina - Fuente
- Italian Journal of Agronomy 16 (4) : 1845. (November 2021).
- Materia
-
Malezas
Control Químico
Herbicidas
Residuos de Plaguicidas
Echinochloa colona
Medio Ambiente
Gestión Ambiental
Weeds
Chemical Control
Herbicides
Pesticide Residues
Environment
Environmental Management
Pergamino, Buenos Aires - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Instituto Nacional de Tecnología Agropecuaria
- OAI Identificador
- oai:localhost:20.500.12123/10977
Ver los metadatos del registro completo
id |
INTADig_8b49a73c2841f77c5fc463a545b4e817 |
---|---|
oai_identifier_str |
oai:localhost:20.500.12123/10977 |
network_acronym_str |
INTADig |
repository_id_str |
l |
network_name_str |
INTA Digital (INTA) |
spelling |
Junglerice (Echinochloa colonaL.) seedling emergence model as a tool to optimize pre-emergent herbicide applicationPicapietra, GabrielAcciaresi, Horacio AbelMalezasControl QuímicoHerbicidasResiduos de PlaguicidasEchinochloa colonaMedio AmbienteGestión AmbientalWeedsChemical ControlHerbicidesPesticide ResiduesEnvironmentEnvironmental ManagementPergamino, Buenos AiresJunglerice (Echinochloa colona), one of the worst and most problematic weeds globally, causes significant economic losses due to yield loss and control cost increase. Taking into account that this weed emerges in approximately five months - from September to January -, and considering that reducing herbicide use is key in the current intensification of agricultural production systems, the present study was carried out under the hypothesis that there should be an optimal moment for pre-emergent herbicide application to achieve maximum weed control effectiveness and efficiency. Therefore, experiments were carried out from August 2016 to January 2021 in Pergamino, Buenos Aires province, Argentina, using a double-logistic emergence model of junglerice seedlings. Bicyclopyrone plus s-metolachlor, clomazone, and pyroxasulfone plus saflufenacil were applied at different times between 92 and 478 growing degree days (GDDs). Single applications between 348 and 399 GDD were observed to reduce junglerice seedling emergence by 85 99%, depending on the herbicide used. Such a seedling emergence reduction could be a convenient strategy to provide significant weed suppression in the field in combination with a competitive crop and within a sustainable production system. The results of the present study lead to the conclusion that using predictive models for pre-emergent herbicide applications ensures more effective use of herbicides and reduces the amounts of herbicides used and the risks of selecting herbicide-resistant junglerice populations.EEA PergaminoFil: Picapietra, Gabirel. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Pergamino. Departamento de Malezas; ArgentinaFil: Picapietra, Gabirel. Universidad Nacional del Noroeste de la Provincia de Buenos Aires. Escuela de Ciencias Agrarias, Naturales y Ambientales (ECANA); ArgentinaFil: Acciaresi, Horacio. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Pergamino. Departamento de Malezas; ArgentinaFil: Acciaresi, Horacio. Provincia de Buenos Aires. Comisión de Investigaciones Científicas; ArgentinaItalian Society for Agronomy2021-12-23T10:44:22Z2021-12-23T10:44:22Z2021-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12123/10977https://www.agronomy.it/index.php/agro/article/view/18452039-6805 (online)https://doi.org/10.4081/ija.2021.1845Italian Journal of Agronomy 16 (4) : 1845. (November 2021).reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)2025-09-04T09:49:13Zoai:localhost:20.500.12123/10977instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-09-04 09:49:14.281INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse |
dc.title.none.fl_str_mv |
Junglerice (Echinochloa colonaL.) seedling emergence model as a tool to optimize pre-emergent herbicide application |
title |
Junglerice (Echinochloa colonaL.) seedling emergence model as a tool to optimize pre-emergent herbicide application |
spellingShingle |
Junglerice (Echinochloa colonaL.) seedling emergence model as a tool to optimize pre-emergent herbicide application Picapietra, Gabriel Malezas Control Químico Herbicidas Residuos de Plaguicidas Echinochloa colona Medio Ambiente Gestión Ambiental Weeds Chemical Control Herbicides Pesticide Residues Environment Environmental Management Pergamino, Buenos Aires |
title_short |
Junglerice (Echinochloa colonaL.) seedling emergence model as a tool to optimize pre-emergent herbicide application |
title_full |
Junglerice (Echinochloa colonaL.) seedling emergence model as a tool to optimize pre-emergent herbicide application |
title_fullStr |
Junglerice (Echinochloa colonaL.) seedling emergence model as a tool to optimize pre-emergent herbicide application |
title_full_unstemmed |
Junglerice (Echinochloa colonaL.) seedling emergence model as a tool to optimize pre-emergent herbicide application |
title_sort |
Junglerice (Echinochloa colonaL.) seedling emergence model as a tool to optimize pre-emergent herbicide application |
dc.creator.none.fl_str_mv |
Picapietra, Gabriel Acciaresi, Horacio Abel |
author |
Picapietra, Gabriel |
author_facet |
Picapietra, Gabriel Acciaresi, Horacio Abel |
author_role |
author |
author2 |
Acciaresi, Horacio Abel |
author2_role |
author |
dc.subject.none.fl_str_mv |
Malezas Control Químico Herbicidas Residuos de Plaguicidas Echinochloa colona Medio Ambiente Gestión Ambiental Weeds Chemical Control Herbicides Pesticide Residues Environment Environmental Management Pergamino, Buenos Aires |
topic |
Malezas Control Químico Herbicidas Residuos de Plaguicidas Echinochloa colona Medio Ambiente Gestión Ambiental Weeds Chemical Control Herbicides Pesticide Residues Environment Environmental Management Pergamino, Buenos Aires |
dc.description.none.fl_txt_mv |
Junglerice (Echinochloa colona), one of the worst and most problematic weeds globally, causes significant economic losses due to yield loss and control cost increase. Taking into account that this weed emerges in approximately five months - from September to January -, and considering that reducing herbicide use is key in the current intensification of agricultural production systems, the present study was carried out under the hypothesis that there should be an optimal moment for pre-emergent herbicide application to achieve maximum weed control effectiveness and efficiency. Therefore, experiments were carried out from August 2016 to January 2021 in Pergamino, Buenos Aires province, Argentina, using a double-logistic emergence model of junglerice seedlings. Bicyclopyrone plus s-metolachlor, clomazone, and pyroxasulfone plus saflufenacil were applied at different times between 92 and 478 growing degree days (GDDs). Single applications between 348 and 399 GDD were observed to reduce junglerice seedling emergence by 85 99%, depending on the herbicide used. Such a seedling emergence reduction could be a convenient strategy to provide significant weed suppression in the field in combination with a competitive crop and within a sustainable production system. The results of the present study lead to the conclusion that using predictive models for pre-emergent herbicide applications ensures more effective use of herbicides and reduces the amounts of herbicides used and the risks of selecting herbicide-resistant junglerice populations. EEA Pergamino Fil: Picapietra, Gabirel. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Pergamino. Departamento de Malezas; Argentina Fil: Picapietra, Gabirel. Universidad Nacional del Noroeste de la Provincia de Buenos Aires. Escuela de Ciencias Agrarias, Naturales y Ambientales (ECANA); Argentina Fil: Acciaresi, Horacio. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Pergamino. Departamento de Malezas; Argentina Fil: Acciaresi, Horacio. Provincia de Buenos Aires. Comisión de Investigaciones Científicas; Argentina |
description |
Junglerice (Echinochloa colona), one of the worst and most problematic weeds globally, causes significant economic losses due to yield loss and control cost increase. Taking into account that this weed emerges in approximately five months - from September to January -, and considering that reducing herbicide use is key in the current intensification of agricultural production systems, the present study was carried out under the hypothesis that there should be an optimal moment for pre-emergent herbicide application to achieve maximum weed control effectiveness and efficiency. Therefore, experiments were carried out from August 2016 to January 2021 in Pergamino, Buenos Aires province, Argentina, using a double-logistic emergence model of junglerice seedlings. Bicyclopyrone plus s-metolachlor, clomazone, and pyroxasulfone plus saflufenacil were applied at different times between 92 and 478 growing degree days (GDDs). Single applications between 348 and 399 GDD were observed to reduce junglerice seedling emergence by 85 99%, depending on the herbicide used. Such a seedling emergence reduction could be a convenient strategy to provide significant weed suppression in the field in combination with a competitive crop and within a sustainable production system. The results of the present study lead to the conclusion that using predictive models for pre-emergent herbicide applications ensures more effective use of herbicides and reduces the amounts of herbicides used and the risks of selecting herbicide-resistant junglerice populations. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-12-23T10:44:22Z 2021-12-23T10:44:22Z 2021-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12123/10977 https://www.agronomy.it/index.php/agro/article/view/1845 2039-6805 (online) https://doi.org/10.4081/ija.2021.1845 |
url |
http://hdl.handle.net/20.500.12123/10977 https://www.agronomy.it/index.php/agro/article/view/1845 https://doi.org/10.4081/ija.2021.1845 |
identifier_str_mv |
2039-6805 (online) |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Italian Society for Agronomy |
publisher.none.fl_str_mv |
Italian Society for Agronomy |
dc.source.none.fl_str_mv |
Italian Journal of Agronomy 16 (4) : 1845. (November 2021). reponame:INTA Digital (INTA) instname:Instituto Nacional de Tecnología Agropecuaria |
reponame_str |
INTA Digital (INTA) |
collection |
INTA Digital (INTA) |
instname_str |
Instituto Nacional de Tecnología Agropecuaria |
repository.name.fl_str_mv |
INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria |
repository.mail.fl_str_mv |
tripaldi.nicolas@inta.gob.ar |
_version_ |
1842341393238851584 |
score |
12.623145 |