Carbon-scaled nitrous oxide emissions better reflect the impacts of land use changes than raw nitrous oxide emissions in the Dry Chaco region
- Autores
- Chalco Vera, Jorge Elías; Acreche, Martin Moises
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In the Dry Chaco region, agriculture expansion has caused significant land use change hotspots. However, the post-impact of land use change on nitrous oxide (N2O) emissions and carbon (C) budgets remains unknown. This study aimed to contrast the impacts of the main land use systems on N2O emissions related to its C inputs and C budgets by comparing them with those of a native forest at two sites of the Dry Chaco region of Argentina. At Site 1, the land use system were soybean-fallow-soybean and maize-fallow-maize sequences, whereas at Site 2, it was a soybean-wheat sequence. Measurements of soil N2O and carbon dioxide (CO2) fluxes were carried out monthly using the static chamber method. The C budgets of each system were determined for the annual crop-fallow cycle by the difference between the C inputs (from annual aboveground (ABG), belowground (BG), and rhizodeposition) and C outputs (defined as cumulative CO2-C emissions). At Site 1, the native forest showed 168 and 50 % more cumulative N2O emissions than maize and soybean, respectively. However, most land use differences were based on C inputs. Thus, when the cumulative N2O emissions of each system were related to their C inputs, the N2O emissions per ton of C entered of the native forest were lower than those of soybean and similar to those of maize. The C budgets (± standard error) at Site 1 were 6.4 ± 1.3, 1.0 ± 0.3 and −0.7 ± 0.6 t C ha−1 yr−1 for native forest, maize and soybean, respectively. At Site 2, they were 3.1 ± 0.7 and −4.0 ± 0.6 t C ha−1 yr−1 for the native forest and the soybean-wheat sequence, respectively. This paper proposes a comprehensive approach that integrates C inputs and budgets when evaluating N2O emissions from different land uses as a guide to define mitigating management practices and considers a native vegetation system to unmask the real impacts of agroecosystems.
EEA Salta
Fil: Chalco Vera, Jorge Elias. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Salta; Argentina.
Fil: Chalco Vera, Jorge Elias. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Acreche, Martin Moises. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Salta; Argentina
Fil: Acreche, Martin Moises. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Fuente
- Agriculture, Ecosystems & Environment 373 : 109128. (October 2024)
- Materia
-
Óxido Nitroso
Carbono
Cambio de Uso de la Tierra
Emisiones de Gases de Efecto Invernadero
Biomasa sobre el Suelo
Secuestro de Carbono
Nitrous Oxide
Carbon
Land-use Change
Greenhouse Gas Emissions
Above Ground Biomass
Carbon Sequestration
Región Chaco Semiárido - Nivel de accesibilidad
- acceso restringido
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Instituto Nacional de Tecnología Agropecuaria
- OAI Identificador
- oai:localhost:20.500.12123/19701
Ver los metadatos del registro completo
id |
INTADig_85abbec34ee1a317d7182d611f86a3cd |
---|---|
oai_identifier_str |
oai:localhost:20.500.12123/19701 |
network_acronym_str |
INTADig |
repository_id_str |
l |
network_name_str |
INTA Digital (INTA) |
spelling |
Carbon-scaled nitrous oxide emissions better reflect the impacts of land use changes than raw nitrous oxide emissions in the Dry Chaco regionChalco Vera, Jorge ElíasAcreche, Martin MoisesÓxido NitrosoCarbonoCambio de Uso de la TierraEmisiones de Gases de Efecto InvernaderoBiomasa sobre el SueloSecuestro de CarbonoNitrous OxideCarbonLand-use ChangeGreenhouse Gas EmissionsAbove Ground BiomassCarbon SequestrationRegión Chaco SemiáridoIn the Dry Chaco region, agriculture expansion has caused significant land use change hotspots. However, the post-impact of land use change on nitrous oxide (N2O) emissions and carbon (C) budgets remains unknown. This study aimed to contrast the impacts of the main land use systems on N2O emissions related to its C inputs and C budgets by comparing them with those of a native forest at two sites of the Dry Chaco region of Argentina. At Site 1, the land use system were soybean-fallow-soybean and maize-fallow-maize sequences, whereas at Site 2, it was a soybean-wheat sequence. Measurements of soil N2O and carbon dioxide (CO2) fluxes were carried out monthly using the static chamber method. The C budgets of each system were determined for the annual crop-fallow cycle by the difference between the C inputs (from annual aboveground (ABG), belowground (BG), and rhizodeposition) and C outputs (defined as cumulative CO2-C emissions). At Site 1, the native forest showed 168 and 50 % more cumulative N2O emissions than maize and soybean, respectively. However, most land use differences were based on C inputs. Thus, when the cumulative N2O emissions of each system were related to their C inputs, the N2O emissions per ton of C entered of the native forest were lower than those of soybean and similar to those of maize. The C budgets (± standard error) at Site 1 were 6.4 ± 1.3, 1.0 ± 0.3 and −0.7 ± 0.6 t C ha−1 yr−1 for native forest, maize and soybean, respectively. At Site 2, they were 3.1 ± 0.7 and −4.0 ± 0.6 t C ha−1 yr−1 for the native forest and the soybean-wheat sequence, respectively. This paper proposes a comprehensive approach that integrates C inputs and budgets when evaluating N2O emissions from different land uses as a guide to define mitigating management practices and considers a native vegetation system to unmask the real impacts of agroecosystems.EEA SaltaFil: Chalco Vera, Jorge Elias. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Salta; Argentina.Fil: Chalco Vera, Jorge Elias. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Acreche, Martin Moises. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Salta; ArgentinaFil: Acreche, Martin Moises. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaElsevier2024-10-07T12:28:25Z2024-10-07T12:28:25Z2024-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12123/19701https://www.sciencedirect.com/science/article/abs/pii/S01678809240024690167-88091873-2305https://doi.org/10.1016/j.agee.2024.109128Agriculture, Ecosystems & Environment 373 : 109128. (October 2024)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repograntAgreement/INTA/PNIND-1108064/AR./Bases ecofisiológicas del mejoramiento y sistemas de cultivo.info:eu-repograntAgreement/INTA/PNNAT-1128023/AR./Emisiones de gases con efecto invernadero.info:eu-repo/semantics/restrictedAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)2025-09-04T09:50:40Zoai:localhost:20.500.12123/19701instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-09-04 09:50:41.36INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse |
dc.title.none.fl_str_mv |
Carbon-scaled nitrous oxide emissions better reflect the impacts of land use changes than raw nitrous oxide emissions in the Dry Chaco region |
title |
Carbon-scaled nitrous oxide emissions better reflect the impacts of land use changes than raw nitrous oxide emissions in the Dry Chaco region |
spellingShingle |
Carbon-scaled nitrous oxide emissions better reflect the impacts of land use changes than raw nitrous oxide emissions in the Dry Chaco region Chalco Vera, Jorge Elías Óxido Nitroso Carbono Cambio de Uso de la Tierra Emisiones de Gases de Efecto Invernadero Biomasa sobre el Suelo Secuestro de Carbono Nitrous Oxide Carbon Land-use Change Greenhouse Gas Emissions Above Ground Biomass Carbon Sequestration Región Chaco Semiárido |
title_short |
Carbon-scaled nitrous oxide emissions better reflect the impacts of land use changes than raw nitrous oxide emissions in the Dry Chaco region |
title_full |
Carbon-scaled nitrous oxide emissions better reflect the impacts of land use changes than raw nitrous oxide emissions in the Dry Chaco region |
title_fullStr |
Carbon-scaled nitrous oxide emissions better reflect the impacts of land use changes than raw nitrous oxide emissions in the Dry Chaco region |
title_full_unstemmed |
Carbon-scaled nitrous oxide emissions better reflect the impacts of land use changes than raw nitrous oxide emissions in the Dry Chaco region |
title_sort |
Carbon-scaled nitrous oxide emissions better reflect the impacts of land use changes than raw nitrous oxide emissions in the Dry Chaco region |
dc.creator.none.fl_str_mv |
Chalco Vera, Jorge Elías Acreche, Martin Moises |
author |
Chalco Vera, Jorge Elías |
author_facet |
Chalco Vera, Jorge Elías Acreche, Martin Moises |
author_role |
author |
author2 |
Acreche, Martin Moises |
author2_role |
author |
dc.subject.none.fl_str_mv |
Óxido Nitroso Carbono Cambio de Uso de la Tierra Emisiones de Gases de Efecto Invernadero Biomasa sobre el Suelo Secuestro de Carbono Nitrous Oxide Carbon Land-use Change Greenhouse Gas Emissions Above Ground Biomass Carbon Sequestration Región Chaco Semiárido |
topic |
Óxido Nitroso Carbono Cambio de Uso de la Tierra Emisiones de Gases de Efecto Invernadero Biomasa sobre el Suelo Secuestro de Carbono Nitrous Oxide Carbon Land-use Change Greenhouse Gas Emissions Above Ground Biomass Carbon Sequestration Región Chaco Semiárido |
dc.description.none.fl_txt_mv |
In the Dry Chaco region, agriculture expansion has caused significant land use change hotspots. However, the post-impact of land use change on nitrous oxide (N2O) emissions and carbon (C) budgets remains unknown. This study aimed to contrast the impacts of the main land use systems on N2O emissions related to its C inputs and C budgets by comparing them with those of a native forest at two sites of the Dry Chaco region of Argentina. At Site 1, the land use system were soybean-fallow-soybean and maize-fallow-maize sequences, whereas at Site 2, it was a soybean-wheat sequence. Measurements of soil N2O and carbon dioxide (CO2) fluxes were carried out monthly using the static chamber method. The C budgets of each system were determined for the annual crop-fallow cycle by the difference between the C inputs (from annual aboveground (ABG), belowground (BG), and rhizodeposition) and C outputs (defined as cumulative CO2-C emissions). At Site 1, the native forest showed 168 and 50 % more cumulative N2O emissions than maize and soybean, respectively. However, most land use differences were based on C inputs. Thus, when the cumulative N2O emissions of each system were related to their C inputs, the N2O emissions per ton of C entered of the native forest were lower than those of soybean and similar to those of maize. The C budgets (± standard error) at Site 1 were 6.4 ± 1.3, 1.0 ± 0.3 and −0.7 ± 0.6 t C ha−1 yr−1 for native forest, maize and soybean, respectively. At Site 2, they were 3.1 ± 0.7 and −4.0 ± 0.6 t C ha−1 yr−1 for the native forest and the soybean-wheat sequence, respectively. This paper proposes a comprehensive approach that integrates C inputs and budgets when evaluating N2O emissions from different land uses as a guide to define mitigating management practices and considers a native vegetation system to unmask the real impacts of agroecosystems. EEA Salta Fil: Chalco Vera, Jorge Elias. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Salta; Argentina. Fil: Chalco Vera, Jorge Elias. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Acreche, Martin Moises. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Salta; Argentina Fil: Acreche, Martin Moises. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
In the Dry Chaco region, agriculture expansion has caused significant land use change hotspots. However, the post-impact of land use change on nitrous oxide (N2O) emissions and carbon (C) budgets remains unknown. This study aimed to contrast the impacts of the main land use systems on N2O emissions related to its C inputs and C budgets by comparing them with those of a native forest at two sites of the Dry Chaco region of Argentina. At Site 1, the land use system were soybean-fallow-soybean and maize-fallow-maize sequences, whereas at Site 2, it was a soybean-wheat sequence. Measurements of soil N2O and carbon dioxide (CO2) fluxes were carried out monthly using the static chamber method. The C budgets of each system were determined for the annual crop-fallow cycle by the difference between the C inputs (from annual aboveground (ABG), belowground (BG), and rhizodeposition) and C outputs (defined as cumulative CO2-C emissions). At Site 1, the native forest showed 168 and 50 % more cumulative N2O emissions than maize and soybean, respectively. However, most land use differences were based on C inputs. Thus, when the cumulative N2O emissions of each system were related to their C inputs, the N2O emissions per ton of C entered of the native forest were lower than those of soybean and similar to those of maize. The C budgets (± standard error) at Site 1 were 6.4 ± 1.3, 1.0 ± 0.3 and −0.7 ± 0.6 t C ha−1 yr−1 for native forest, maize and soybean, respectively. At Site 2, they were 3.1 ± 0.7 and −4.0 ± 0.6 t C ha−1 yr−1 for the native forest and the soybean-wheat sequence, respectively. This paper proposes a comprehensive approach that integrates C inputs and budgets when evaluating N2O emissions from different land uses as a guide to define mitigating management practices and considers a native vegetation system to unmask the real impacts of agroecosystems. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-10-07T12:28:25Z 2024-10-07T12:28:25Z 2024-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12123/19701 https://www.sciencedirect.com/science/article/abs/pii/S0167880924002469 0167-8809 1873-2305 https://doi.org/10.1016/j.agee.2024.109128 |
url |
http://hdl.handle.net/20.500.12123/19701 https://www.sciencedirect.com/science/article/abs/pii/S0167880924002469 https://doi.org/10.1016/j.agee.2024.109128 |
identifier_str_mv |
0167-8809 1873-2305 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repograntAgreement/INTA/PNIND-1108064/AR./Bases ecofisiológicas del mejoramiento y sistemas de cultivo. info:eu-repograntAgreement/INTA/PNNAT-1128023/AR./Emisiones de gases con efecto invernadero. |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
restrictedAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
Agriculture, Ecosystems & Environment 373 : 109128. (October 2024) reponame:INTA Digital (INTA) instname:Instituto Nacional de Tecnología Agropecuaria |
reponame_str |
INTA Digital (INTA) |
collection |
INTA Digital (INTA) |
instname_str |
Instituto Nacional de Tecnología Agropecuaria |
repository.name.fl_str_mv |
INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria |
repository.mail.fl_str_mv |
tripaldi.nicolas@inta.gob.ar |
_version_ |
1842341428772995072 |
score |
12.623145 |