CRISPR/Cas9 for potato functional genomics and breeding
- Autores
- Gonzalez, Matías Nicolás; Massa, Gabriela Alejandra; Andersson, Mariette; Storani, Leonardo; Olsson, Niklas; Decima Oneto, Cecilia Andrea; Hofvander, Per; Feingold, Sergio Enrique
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- parte de libro
- Estado
- versión publicada
- Descripción
- Cultivated potato (Solanum tuberosum L.) is one of the most important staple food crops worldwide. Its tetraploid and highly heterozygous nature pose a great challenge to its basic research and trait improvement through traditional mutagenesis and/or crossbreeding. The establishment of the clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein 9 (Cas9) as a gene-editing tool has allowed the alteration of specific gene sequences and their concomitant gene function, providing powerful technology for potato gene functional analysis and improvement of elite cultivars. This technology relies on a short RNA molecule called single guide RNA (sgRNA) that directs the Cas9 nuclease to induce a site-specific double-stranded break (DSB). Further, repair of the DSB by the error-prone non-homologous end joining (NHEJ) mechanism, leads to the introduction of targeted mutations, which can be used to produce the loss of function of specific gene/s. In this chapter, we describe experimental procedures to apply the CRISPR/Cas9 technology for potato genome editing. First, we provide strategies for target selection and sgRNA design and describe a Golden Gate-based cloning system to obtain a sgRNA/Cas9-encoding binary vector. We also describe an optimized protocol for ribonucleoprotein complexes (RNP) assembly. The binary vector can be used for both Agrobacterium-mediated transformation and transient expression in potato protoplasts, while the RNP complexes are intended to obtain edited potato lines through protoplast transfection and plant regeneration. Finally, we describe procedures to identify the gene-edited potato lines. The methods described here are suitable for potato gene functional analysis and breeding.
EEA Balcarce
Fil: González, Matías Nicolás Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible Balcarce; Argentina
Fil: Massa, Gabriela Alejandra. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible Balcarce; Argentina
Fil: Massa, Gabriela Alejandra. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina
Fil: Andersson, Mariette. Swedish University Of Agricultural Sciences; Suecia
Fil: Storani, Leonardo. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible Balcarce; Argentina
Fil: Olsson, Niklas. Swedish University Of Agricultural Sciences; Suecia
Fil: Décima Oneto, Cecilia Andrea. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible Balcarce; Argentina
Fil: Décima Oneto, Cecilia Andrea.Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina
Fil: Hofvander, Per. Swedish University Of Agricultural Sciences; Suecia
Fil: Feingold, Sergio. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible Balcarce; Argentina - Fuente
- Plant Genome engineering / Yang, B.; Harwood, W.; Que, Q. (editors). New York: Humana Press, 2023. Chapter 21, p. 333-361
- Materia
-
Papa
Edición de Genes
Genómica Funcional
Agrobacterium tumefaciens
Proteínas
Mejoramiento Genético
Potatoes
Gene Editing
Functional Genomics
Proteins
Genetic Improvement
CRISPR
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Interespaciadas - Nivel de accesibilidad
- acceso restringido
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Instituto Nacional de Tecnología Agropecuaria
- OAI Identificador
- oai:localhost:20.500.12123/17657
Ver los metadatos del registro completo
id |
INTADig_7d2be3bf50a9723cd9dbace490d3b225 |
---|---|
oai_identifier_str |
oai:localhost:20.500.12123/17657 |
network_acronym_str |
INTADig |
repository_id_str |
l |
network_name_str |
INTA Digital (INTA) |
spelling |
CRISPR/Cas9 for potato functional genomics and breedingGonzalez, Matías NicolásMassa, Gabriela AlejandraAndersson, MarietteStorani, LeonardoOlsson, NiklasDecima Oneto, Cecilia AndreaHofvander, PerFeingold, Sergio EnriquePapaEdición de GenesGenómica FuncionalAgrobacterium tumefaciensProteínasMejoramiento GenéticoPotatoesGene EditingFunctional GenomicsProteinsGenetic ImprovementCRISPRRepeticiones Palindrómicas Cortas Agrupadas y Regularmente InterespaciadasCultivated potato (Solanum tuberosum L.) is one of the most important staple food crops worldwide. Its tetraploid and highly heterozygous nature pose a great challenge to its basic research and trait improvement through traditional mutagenesis and/or crossbreeding. The establishment of the clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein 9 (Cas9) as a gene-editing tool has allowed the alteration of specific gene sequences and their concomitant gene function, providing powerful technology for potato gene functional analysis and improvement of elite cultivars. This technology relies on a short RNA molecule called single guide RNA (sgRNA) that directs the Cas9 nuclease to induce a site-specific double-stranded break (DSB). Further, repair of the DSB by the error-prone non-homologous end joining (NHEJ) mechanism, leads to the introduction of targeted mutations, which can be used to produce the loss of function of specific gene/s. In this chapter, we describe experimental procedures to apply the CRISPR/Cas9 technology for potato genome editing. First, we provide strategies for target selection and sgRNA design and describe a Golden Gate-based cloning system to obtain a sgRNA/Cas9-encoding binary vector. We also describe an optimized protocol for ribonucleoprotein complexes (RNP) assembly. The binary vector can be used for both Agrobacterium-mediated transformation and transient expression in potato protoplasts, while the RNP complexes are intended to obtain edited potato lines through protoplast transfection and plant regeneration. Finally, we describe procedures to identify the gene-edited potato lines. The methods described here are suitable for potato gene functional analysis and breeding.EEA BalcarceFil: González, Matías Nicolás Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible Balcarce; ArgentinaFil: Massa, Gabriela Alejandra. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible Balcarce; ArgentinaFil: Massa, Gabriela Alejandra. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; ArgentinaFil: Andersson, Mariette. Swedish University Of Agricultural Sciences; SueciaFil: Storani, Leonardo. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible Balcarce; ArgentinaFil: Olsson, Niklas. Swedish University Of Agricultural Sciences; SueciaFil: Décima Oneto, Cecilia Andrea. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible Balcarce; ArgentinaFil: Décima Oneto, Cecilia Andrea.Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; ArgentinaFil: Hofvander, Per. Swedish University Of Agricultural Sciences; SueciaFil: Feingold, Sergio. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible Balcarce; ArgentinaHumana Press (Springer)2024-05-08T11:14:58Z2024-05-08T11:14:58Z2023-03-31info:eu-repo/semantics/bookPartinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_3248info:ar-repo/semantics/parteDeLibroapplication/pdfhttp://hdl.handle.net/20.500.12123/17657https://link.springer.com/protocol/10.1007/978-1-0716-3131-7_21978-1-0716-3130-0978-1-0716-3131-7https://doi.org/10.1007/978-1-0716-3131-7_21Plant Genome engineering / Yang, B.; Harwood, W.; Que, Q. (editors). New York: Humana Press, 2023. Chapter 21, p. 333-361reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repo/semantics/restrictedAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)2025-09-04T09:50:21Zoai:localhost:20.500.12123/17657instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-09-04 09:50:22.147INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse |
dc.title.none.fl_str_mv |
CRISPR/Cas9 for potato functional genomics and breeding |
title |
CRISPR/Cas9 for potato functional genomics and breeding |
spellingShingle |
CRISPR/Cas9 for potato functional genomics and breeding Gonzalez, Matías Nicolás Papa Edición de Genes Genómica Funcional Agrobacterium tumefaciens Proteínas Mejoramiento Genético Potatoes Gene Editing Functional Genomics Proteins Genetic Improvement CRISPR Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Interespaciadas |
title_short |
CRISPR/Cas9 for potato functional genomics and breeding |
title_full |
CRISPR/Cas9 for potato functional genomics and breeding |
title_fullStr |
CRISPR/Cas9 for potato functional genomics and breeding |
title_full_unstemmed |
CRISPR/Cas9 for potato functional genomics and breeding |
title_sort |
CRISPR/Cas9 for potato functional genomics and breeding |
dc.creator.none.fl_str_mv |
Gonzalez, Matías Nicolás Massa, Gabriela Alejandra Andersson, Mariette Storani, Leonardo Olsson, Niklas Decima Oneto, Cecilia Andrea Hofvander, Per Feingold, Sergio Enrique |
author |
Gonzalez, Matías Nicolás |
author_facet |
Gonzalez, Matías Nicolás Massa, Gabriela Alejandra Andersson, Mariette Storani, Leonardo Olsson, Niklas Decima Oneto, Cecilia Andrea Hofvander, Per Feingold, Sergio Enrique |
author_role |
author |
author2 |
Massa, Gabriela Alejandra Andersson, Mariette Storani, Leonardo Olsson, Niklas Decima Oneto, Cecilia Andrea Hofvander, Per Feingold, Sergio Enrique |
author2_role |
author author author author author author author |
dc.subject.none.fl_str_mv |
Papa Edición de Genes Genómica Funcional Agrobacterium tumefaciens Proteínas Mejoramiento Genético Potatoes Gene Editing Functional Genomics Proteins Genetic Improvement CRISPR Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Interespaciadas |
topic |
Papa Edición de Genes Genómica Funcional Agrobacterium tumefaciens Proteínas Mejoramiento Genético Potatoes Gene Editing Functional Genomics Proteins Genetic Improvement CRISPR Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Interespaciadas |
dc.description.none.fl_txt_mv |
Cultivated potato (Solanum tuberosum L.) is one of the most important staple food crops worldwide. Its tetraploid and highly heterozygous nature pose a great challenge to its basic research and trait improvement through traditional mutagenesis and/or crossbreeding. The establishment of the clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein 9 (Cas9) as a gene-editing tool has allowed the alteration of specific gene sequences and their concomitant gene function, providing powerful technology for potato gene functional analysis and improvement of elite cultivars. This technology relies on a short RNA molecule called single guide RNA (sgRNA) that directs the Cas9 nuclease to induce a site-specific double-stranded break (DSB). Further, repair of the DSB by the error-prone non-homologous end joining (NHEJ) mechanism, leads to the introduction of targeted mutations, which can be used to produce the loss of function of specific gene/s. In this chapter, we describe experimental procedures to apply the CRISPR/Cas9 technology for potato genome editing. First, we provide strategies for target selection and sgRNA design and describe a Golden Gate-based cloning system to obtain a sgRNA/Cas9-encoding binary vector. We also describe an optimized protocol for ribonucleoprotein complexes (RNP) assembly. The binary vector can be used for both Agrobacterium-mediated transformation and transient expression in potato protoplasts, while the RNP complexes are intended to obtain edited potato lines through protoplast transfection and plant regeneration. Finally, we describe procedures to identify the gene-edited potato lines. The methods described here are suitable for potato gene functional analysis and breeding. EEA Balcarce Fil: González, Matías Nicolás Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible Balcarce; Argentina Fil: Massa, Gabriela Alejandra. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible Balcarce; Argentina Fil: Massa, Gabriela Alejandra. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina Fil: Andersson, Mariette. Swedish University Of Agricultural Sciences; Suecia Fil: Storani, Leonardo. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible Balcarce; Argentina Fil: Olsson, Niklas. Swedish University Of Agricultural Sciences; Suecia Fil: Décima Oneto, Cecilia Andrea. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible Balcarce; Argentina Fil: Décima Oneto, Cecilia Andrea.Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina Fil: Hofvander, Per. Swedish University Of Agricultural Sciences; Suecia Fil: Feingold, Sergio. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible Balcarce; Argentina |
description |
Cultivated potato (Solanum tuberosum L.) is one of the most important staple food crops worldwide. Its tetraploid and highly heterozygous nature pose a great challenge to its basic research and trait improvement through traditional mutagenesis and/or crossbreeding. The establishment of the clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein 9 (Cas9) as a gene-editing tool has allowed the alteration of specific gene sequences and their concomitant gene function, providing powerful technology for potato gene functional analysis and improvement of elite cultivars. This technology relies on a short RNA molecule called single guide RNA (sgRNA) that directs the Cas9 nuclease to induce a site-specific double-stranded break (DSB). Further, repair of the DSB by the error-prone non-homologous end joining (NHEJ) mechanism, leads to the introduction of targeted mutations, which can be used to produce the loss of function of specific gene/s. In this chapter, we describe experimental procedures to apply the CRISPR/Cas9 technology for potato genome editing. First, we provide strategies for target selection and sgRNA design and describe a Golden Gate-based cloning system to obtain a sgRNA/Cas9-encoding binary vector. We also describe an optimized protocol for ribonucleoprotein complexes (RNP) assembly. The binary vector can be used for both Agrobacterium-mediated transformation and transient expression in potato protoplasts, while the RNP complexes are intended to obtain edited potato lines through protoplast transfection and plant regeneration. Finally, we describe procedures to identify the gene-edited potato lines. The methods described here are suitable for potato gene functional analysis and breeding. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-03-31 2024-05-08T11:14:58Z 2024-05-08T11:14:58Z |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/bookPart info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_3248 info:ar-repo/semantics/parteDeLibro |
format |
bookPart |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12123/17657 https://link.springer.com/protocol/10.1007/978-1-0716-3131-7_21 978-1-0716-3130-0 978-1-0716-3131-7 https://doi.org/10.1007/978-1-0716-3131-7_21 |
url |
http://hdl.handle.net/20.500.12123/17657 https://link.springer.com/protocol/10.1007/978-1-0716-3131-7_21 https://doi.org/10.1007/978-1-0716-3131-7_21 |
identifier_str_mv |
978-1-0716-3130-0 978-1-0716-3131-7 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
restrictedAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Humana Press (Springer) |
publisher.none.fl_str_mv |
Humana Press (Springer) |
dc.source.none.fl_str_mv |
Plant Genome engineering / Yang, B.; Harwood, W.; Que, Q. (editors). New York: Humana Press, 2023. Chapter 21, p. 333-361 reponame:INTA Digital (INTA) instname:Instituto Nacional de Tecnología Agropecuaria |
reponame_str |
INTA Digital (INTA) |
collection |
INTA Digital (INTA) |
instname_str |
Instituto Nacional de Tecnología Agropecuaria |
repository.name.fl_str_mv |
INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria |
repository.mail.fl_str_mv |
tripaldi.nicolas@inta.gob.ar |
_version_ |
1842341421834567680 |
score |
12.623145 |