CRISPR/Cas9 for potato functional genomics and breeding

Autores
Gonzalez, Matías Nicolás; Massa, Gabriela Alejandra; Andersson, Mariette; Storani, Leonardo; Olsson, Niklas; Decima Oneto, Cecilia Andrea; Hofvander, Per; Feingold, Sergio Enrique
Año de publicación
2023
Idioma
inglés
Tipo de recurso
parte de libro
Estado
versión publicada
Descripción
Cultivated potato (Solanum tuberosum L.) is one of the most important staple food crops worldwide. Its tetraploid and highly heterozygous nature pose a great challenge to its basic research and trait improvement through traditional mutagenesis and/or crossbreeding. The establishment of the clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein 9 (Cas9) as a gene-editing tool has allowed the alteration of specific gene sequences and their concomitant gene function, providing powerful technology for potato gene functional analysis and improvement of elite cultivars. This technology relies on a short RNA molecule called single guide RNA (sgRNA) that directs the Cas9 nuclease to induce a site-specific double-stranded break (DSB). Further, repair of the DSB by the error-prone non-homologous end joining (NHEJ) mechanism, leads to the introduction of targeted mutations, which can be used to produce the loss of function of specific gene/s. In this chapter, we describe experimental procedures to apply the CRISPR/Cas9 technology for potato genome editing. First, we provide strategies for target selection and sgRNA design and describe a Golden Gate-based cloning system to obtain a sgRNA/Cas9-encoding binary vector. We also describe an optimized protocol for ribonucleoprotein complexes (RNP) assembly. The binary vector can be used for both Agrobacterium-mediated transformation and transient expression in potato protoplasts, while the RNP complexes are intended to obtain edited potato lines through protoplast transfection and plant regeneration. Finally, we describe procedures to identify the gene-edited potato lines. The methods described here are suitable for potato gene functional analysis and breeding.
EEA Balcarce
Fil: González, Matías Nicolás Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible Balcarce; Argentina
Fil: Massa, Gabriela Alejandra. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible Balcarce; Argentina
Fil: Massa, Gabriela Alejandra. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina
Fil: Andersson, Mariette. Swedish University Of Agricultural Sciences; Suecia
Fil: Storani, Leonardo. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible Balcarce; Argentina
Fil: Olsson, Niklas. Swedish University Of Agricultural Sciences; Suecia
Fil: Décima Oneto, Cecilia Andrea. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible Balcarce; Argentina
Fil: Décima Oneto, Cecilia Andrea.Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina
Fil: Hofvander, Per. Swedish University Of Agricultural Sciences; Suecia
Fil: Feingold, Sergio. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible Balcarce; Argentina
Fuente
Plant Genome engineering / Yang, B.; Harwood, W.; Que, Q. (editors). New York: Humana Press, 2023. Chapter 21, p. 333-361
Materia
Papa
Edición de Genes
Genómica Funcional
Agrobacterium tumefaciens
Proteínas
Mejoramiento Genético
Potatoes
Gene Editing
Functional Genomics
Proteins
Genetic Improvement
CRISPR
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Interespaciadas
Nivel de accesibilidad
acceso restringido
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
INTA Digital (INTA)
Institución
Instituto Nacional de Tecnología Agropecuaria
OAI Identificador
oai:localhost:20.500.12123/17657

id INTADig_7d2be3bf50a9723cd9dbace490d3b225
oai_identifier_str oai:localhost:20.500.12123/17657
network_acronym_str INTADig
repository_id_str l
network_name_str INTA Digital (INTA)
spelling CRISPR/Cas9 for potato functional genomics and breedingGonzalez, Matías NicolásMassa, Gabriela AlejandraAndersson, MarietteStorani, LeonardoOlsson, NiklasDecima Oneto, Cecilia AndreaHofvander, PerFeingold, Sergio EnriquePapaEdición de GenesGenómica FuncionalAgrobacterium tumefaciensProteínasMejoramiento GenéticoPotatoesGene EditingFunctional GenomicsProteinsGenetic ImprovementCRISPRRepeticiones Palindrómicas Cortas Agrupadas y Regularmente InterespaciadasCultivated potato (Solanum tuberosum L.) is one of the most important staple food crops worldwide. Its tetraploid and highly heterozygous nature pose a great challenge to its basic research and trait improvement through traditional mutagenesis and/or crossbreeding. The establishment of the clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein 9 (Cas9) as a gene-editing tool has allowed the alteration of specific gene sequences and their concomitant gene function, providing powerful technology for potato gene functional analysis and improvement of elite cultivars. This technology relies on a short RNA molecule called single guide RNA (sgRNA) that directs the Cas9 nuclease to induce a site-specific double-stranded break (DSB). Further, repair of the DSB by the error-prone non-homologous end joining (NHEJ) mechanism, leads to the introduction of targeted mutations, which can be used to produce the loss of function of specific gene/s. In this chapter, we describe experimental procedures to apply the CRISPR/Cas9 technology for potato genome editing. First, we provide strategies for target selection and sgRNA design and describe a Golden Gate-based cloning system to obtain a sgRNA/Cas9-encoding binary vector. We also describe an optimized protocol for ribonucleoprotein complexes (RNP) assembly. The binary vector can be used for both Agrobacterium-mediated transformation and transient expression in potato protoplasts, while the RNP complexes are intended to obtain edited potato lines through protoplast transfection and plant regeneration. Finally, we describe procedures to identify the gene-edited potato lines. The methods described here are suitable for potato gene functional analysis and breeding.EEA BalcarceFil: González, Matías Nicolás Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible Balcarce; ArgentinaFil: Massa, Gabriela Alejandra. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible Balcarce; ArgentinaFil: Massa, Gabriela Alejandra. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; ArgentinaFil: Andersson, Mariette. Swedish University Of Agricultural Sciences; SueciaFil: Storani, Leonardo. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible Balcarce; ArgentinaFil: Olsson, Niklas. Swedish University Of Agricultural Sciences; SueciaFil: Décima Oneto, Cecilia Andrea. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible Balcarce; ArgentinaFil: Décima Oneto, Cecilia Andrea.Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; ArgentinaFil: Hofvander, Per. Swedish University Of Agricultural Sciences; SueciaFil: Feingold, Sergio. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible Balcarce; ArgentinaHumana Press (Springer)2024-05-08T11:14:58Z2024-05-08T11:14:58Z2023-03-31info:eu-repo/semantics/bookPartinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_3248info:ar-repo/semantics/parteDeLibroapplication/pdfhttp://hdl.handle.net/20.500.12123/17657https://link.springer.com/protocol/10.1007/978-1-0716-3131-7_21978-1-0716-3130-0978-1-0716-3131-7https://doi.org/10.1007/978-1-0716-3131-7_21Plant Genome engineering / Yang, B.; Harwood, W.; Que, Q. (editors). New York: Humana Press, 2023. Chapter 21, p. 333-361reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repo/semantics/restrictedAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)2025-09-04T09:50:21Zoai:localhost:20.500.12123/17657instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-09-04 09:50:22.147INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse
dc.title.none.fl_str_mv CRISPR/Cas9 for potato functional genomics and breeding
title CRISPR/Cas9 for potato functional genomics and breeding
spellingShingle CRISPR/Cas9 for potato functional genomics and breeding
Gonzalez, Matías Nicolás
Papa
Edición de Genes
Genómica Funcional
Agrobacterium tumefaciens
Proteínas
Mejoramiento Genético
Potatoes
Gene Editing
Functional Genomics
Proteins
Genetic Improvement
CRISPR
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Interespaciadas
title_short CRISPR/Cas9 for potato functional genomics and breeding
title_full CRISPR/Cas9 for potato functional genomics and breeding
title_fullStr CRISPR/Cas9 for potato functional genomics and breeding
title_full_unstemmed CRISPR/Cas9 for potato functional genomics and breeding
title_sort CRISPR/Cas9 for potato functional genomics and breeding
dc.creator.none.fl_str_mv Gonzalez, Matías Nicolás
Massa, Gabriela Alejandra
Andersson, Mariette
Storani, Leonardo
Olsson, Niklas
Decima Oneto, Cecilia Andrea
Hofvander, Per
Feingold, Sergio Enrique
author Gonzalez, Matías Nicolás
author_facet Gonzalez, Matías Nicolás
Massa, Gabriela Alejandra
Andersson, Mariette
Storani, Leonardo
Olsson, Niklas
Decima Oneto, Cecilia Andrea
Hofvander, Per
Feingold, Sergio Enrique
author_role author
author2 Massa, Gabriela Alejandra
Andersson, Mariette
Storani, Leonardo
Olsson, Niklas
Decima Oneto, Cecilia Andrea
Hofvander, Per
Feingold, Sergio Enrique
author2_role author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Papa
Edición de Genes
Genómica Funcional
Agrobacterium tumefaciens
Proteínas
Mejoramiento Genético
Potatoes
Gene Editing
Functional Genomics
Proteins
Genetic Improvement
CRISPR
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Interespaciadas
topic Papa
Edición de Genes
Genómica Funcional
Agrobacterium tumefaciens
Proteínas
Mejoramiento Genético
Potatoes
Gene Editing
Functional Genomics
Proteins
Genetic Improvement
CRISPR
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Interespaciadas
dc.description.none.fl_txt_mv Cultivated potato (Solanum tuberosum L.) is one of the most important staple food crops worldwide. Its tetraploid and highly heterozygous nature pose a great challenge to its basic research and trait improvement through traditional mutagenesis and/or crossbreeding. The establishment of the clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein 9 (Cas9) as a gene-editing tool has allowed the alteration of specific gene sequences and their concomitant gene function, providing powerful technology for potato gene functional analysis and improvement of elite cultivars. This technology relies on a short RNA molecule called single guide RNA (sgRNA) that directs the Cas9 nuclease to induce a site-specific double-stranded break (DSB). Further, repair of the DSB by the error-prone non-homologous end joining (NHEJ) mechanism, leads to the introduction of targeted mutations, which can be used to produce the loss of function of specific gene/s. In this chapter, we describe experimental procedures to apply the CRISPR/Cas9 technology for potato genome editing. First, we provide strategies for target selection and sgRNA design and describe a Golden Gate-based cloning system to obtain a sgRNA/Cas9-encoding binary vector. We also describe an optimized protocol for ribonucleoprotein complexes (RNP) assembly. The binary vector can be used for both Agrobacterium-mediated transformation and transient expression in potato protoplasts, while the RNP complexes are intended to obtain edited potato lines through protoplast transfection and plant regeneration. Finally, we describe procedures to identify the gene-edited potato lines. The methods described here are suitable for potato gene functional analysis and breeding.
EEA Balcarce
Fil: González, Matías Nicolás Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible Balcarce; Argentina
Fil: Massa, Gabriela Alejandra. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible Balcarce; Argentina
Fil: Massa, Gabriela Alejandra. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina
Fil: Andersson, Mariette. Swedish University Of Agricultural Sciences; Suecia
Fil: Storani, Leonardo. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible Balcarce; Argentina
Fil: Olsson, Niklas. Swedish University Of Agricultural Sciences; Suecia
Fil: Décima Oneto, Cecilia Andrea. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible Balcarce; Argentina
Fil: Décima Oneto, Cecilia Andrea.Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina
Fil: Hofvander, Per. Swedish University Of Agricultural Sciences; Suecia
Fil: Feingold, Sergio. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible Balcarce; Argentina
description Cultivated potato (Solanum tuberosum L.) is one of the most important staple food crops worldwide. Its tetraploid and highly heterozygous nature pose a great challenge to its basic research and trait improvement through traditional mutagenesis and/or crossbreeding. The establishment of the clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein 9 (Cas9) as a gene-editing tool has allowed the alteration of specific gene sequences and their concomitant gene function, providing powerful technology for potato gene functional analysis and improvement of elite cultivars. This technology relies on a short RNA molecule called single guide RNA (sgRNA) that directs the Cas9 nuclease to induce a site-specific double-stranded break (DSB). Further, repair of the DSB by the error-prone non-homologous end joining (NHEJ) mechanism, leads to the introduction of targeted mutations, which can be used to produce the loss of function of specific gene/s. In this chapter, we describe experimental procedures to apply the CRISPR/Cas9 technology for potato genome editing. First, we provide strategies for target selection and sgRNA design and describe a Golden Gate-based cloning system to obtain a sgRNA/Cas9-encoding binary vector. We also describe an optimized protocol for ribonucleoprotein complexes (RNP) assembly. The binary vector can be used for both Agrobacterium-mediated transformation and transient expression in potato protoplasts, while the RNP complexes are intended to obtain edited potato lines through protoplast transfection and plant regeneration. Finally, we describe procedures to identify the gene-edited potato lines. The methods described here are suitable for potato gene functional analysis and breeding.
publishDate 2023
dc.date.none.fl_str_mv 2023-03-31
2024-05-08T11:14:58Z
2024-05-08T11:14:58Z
dc.type.none.fl_str_mv info:eu-repo/semantics/bookPart
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_3248
info:ar-repo/semantics/parteDeLibro
format bookPart
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12123/17657
https://link.springer.com/protocol/10.1007/978-1-0716-3131-7_21
978-1-0716-3130-0
978-1-0716-3131-7
https://doi.org/10.1007/978-1-0716-3131-7_21
url http://hdl.handle.net/20.500.12123/17657
https://link.springer.com/protocol/10.1007/978-1-0716-3131-7_21
https://doi.org/10.1007/978-1-0716-3131-7_21
identifier_str_mv 978-1-0716-3130-0
978-1-0716-3131-7
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv restrictedAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Humana Press (Springer)
publisher.none.fl_str_mv Humana Press (Springer)
dc.source.none.fl_str_mv Plant Genome engineering / Yang, B.; Harwood, W.; Que, Q. (editors). New York: Humana Press, 2023. Chapter 21, p. 333-361
reponame:INTA Digital (INTA)
instname:Instituto Nacional de Tecnología Agropecuaria
reponame_str INTA Digital (INTA)
collection INTA Digital (INTA)
instname_str Instituto Nacional de Tecnología Agropecuaria
repository.name.fl_str_mv INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria
repository.mail.fl_str_mv tripaldi.nicolas@inta.gob.ar
_version_ 1842341421834567680
score 12.623145