Fertilizer use soil health and agricultural sustainability

Autores
Krasilnikov, Pavel; Taboada, Miguel Angel; Amanullah
Año de publicación
2022
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Due to the growing population and consequent pressure of use, agricultural soils must maintain adequate levels of quantity and quality to produce food, fiber, and energy, without falling victim to a negative impact on their balance of nutrients, health, or their ability to function. The use of mineral fertilizers has long been a key tool to offset nutrient outputs and thus achieve increased yields [1–4]. Fertilizer application is believed to have been responsible for at least 50% increase in crop yield in the 20th century [5,6]. According to [5], average corn yields would decline by 40 percent without nitrogen (N) fertilizer application, while long-term studies confirmed a 40–57 percent yield decline in wheat without fertilizer application. Yousaf et al. [6] reported a 19–41% yield increase in rice, and a 61–76% increase in rapeseed with the combined application of NPK fertilizers. However, due to the inappropriate use of mineral fertilizers (i.e., when used in both excess or deficiency), mostly concerning nitrogenous and phosphate, many productive soils have been thwarted in their ability to function, as shown not only by chemical indicators but also by physical and biological ones. Thus, improper fertilizing technology might have a negative effect on soil health and soil-related ecosystem services. Imbalanced use of chemical fertilizers can alter soil pH, and increase pests attack, acidification, and soil crust, which results in a decrease in soil organic carbon and useful organisms, stunting plant growth and yield, and even leading to the emission of greenhouse gases [7,8]. Soil health is defined as the capacity of soil to function as a vital living system, within ecosystem and land-use boundaries, to sustain plant and animal health and productivity, and maintain or improve water and air quality. A major challenge for agricultural sustainability is to conserve ecosystem service delivery while optimizing agricultural yields. This Special Issue addresses the task to find a balance between increasing yields using conventional and novel fertilizers, and the maintenance of soil and environmental health as a basis for the sustainable intensification of the agricultural sector. The purpose of this issue was to provide new knowledge on fertilizer use, soil health, and agricultural sustainability. We received a total of 13 papers that provided interesting and innovative information. Five of them [9–13] were works on basic studies on the status of nutrients. These studies were based on the reviews of published works, or on experiments under controlled conditions (greenhouse and incubation) referring to nitrogen losses due to volatilization, leaching, denitrification, the distribution of nutrients, the combined or integrated use of mineral and organic fertilizers, bio-based nitrogen, or new findings in sulfur, a largely low-attended nutrient.
Fil: Krasilnikov, Pavel. Lomonosov Moscow State University. Department of Soil Geography; Rusia
Fil: Taboada, Miguel Angel. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Suelos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Amanullah. The University of Agriculture. Faculty of Crop Production Sciences. Department of Agronomy; Paquistán
Fuente
Agriculture 12 (4) : 462 (March 2022)
Materia
Usos
Abonos
Suelo
Sostenibilidad
Uses
Fertilizers
Soil
Sustainability
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
INTA Digital (INTA)
Institución
Instituto Nacional de Tecnología Agropecuaria
OAI Identificador
oai:localhost:20.500.12123/13110

id INTADig_6d6fd9f04febc6c9ad5d29e8b25e82a8
oai_identifier_str oai:localhost:20.500.12123/13110
network_acronym_str INTADig
repository_id_str l
network_name_str INTA Digital (INTA)
spelling Fertilizer use soil health and agricultural sustainabilityKrasilnikov, PavelTaboada, Miguel AngelAmanullahUsosAbonosSueloSostenibilidadUsesFertilizersSoilSustainabilityDue to the growing population and consequent pressure of use, agricultural soils must maintain adequate levels of quantity and quality to produce food, fiber, and energy, without falling victim to a negative impact on their balance of nutrients, health, or their ability to function. The use of mineral fertilizers has long been a key tool to offset nutrient outputs and thus achieve increased yields [1–4]. Fertilizer application is believed to have been responsible for at least 50% increase in crop yield in the 20th century [5,6]. According to [5], average corn yields would decline by 40 percent without nitrogen (N) fertilizer application, while long-term studies confirmed a 40–57 percent yield decline in wheat without fertilizer application. Yousaf et al. [6] reported a 19–41% yield increase in rice, and a 61–76% increase in rapeseed with the combined application of NPK fertilizers. However, due to the inappropriate use of mineral fertilizers (i.e., when used in both excess or deficiency), mostly concerning nitrogenous and phosphate, many productive soils have been thwarted in their ability to function, as shown not only by chemical indicators but also by physical and biological ones. Thus, improper fertilizing technology might have a negative effect on soil health and soil-related ecosystem services. Imbalanced use of chemical fertilizers can alter soil pH, and increase pests attack, acidification, and soil crust, which results in a decrease in soil organic carbon and useful organisms, stunting plant growth and yield, and even leading to the emission of greenhouse gases [7,8]. Soil health is defined as the capacity of soil to function as a vital living system, within ecosystem and land-use boundaries, to sustain plant and animal health and productivity, and maintain or improve water and air quality. A major challenge for agricultural sustainability is to conserve ecosystem service delivery while optimizing agricultural yields. This Special Issue addresses the task to find a balance between increasing yields using conventional and novel fertilizers, and the maintenance of soil and environmental health as a basis for the sustainable intensification of the agricultural sector. The purpose of this issue was to provide new knowledge on fertilizer use, soil health, and agricultural sustainability. We received a total of 13 papers that provided interesting and innovative information. Five of them [9–13] were works on basic studies on the status of nutrients. These studies were based on the reviews of published works, or on experiments under controlled conditions (greenhouse and incubation) referring to nitrogen losses due to volatilization, leaching, denitrification, the distribution of nutrients, the combined or integrated use of mineral and organic fertilizers, bio-based nitrogen, or new findings in sulfur, a largely low-attended nutrient.Fil: Krasilnikov, Pavel. Lomonosov Moscow State University. Department of Soil Geography; RusiaFil: Taboada, Miguel Angel. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Suelos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Amanullah. The University of Agriculture. Faculty of Crop Production Sciences. Department of Agronomy; PaquistánMDPI2022-10-13T14:29:25Z2022-10-13T14:29:25Z2022-03-25info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12123/13110https://www.mdpi.com/2077-0472/12/4/462/htm2077-0472https://doi.org/10.3390/agriculture12040462Agriculture 12 (4) : 462 (March 2022)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)2025-10-23T11:18:08Zoai:localhost:20.500.12123/13110instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-10-23 11:18:09.234INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse
dc.title.none.fl_str_mv Fertilizer use soil health and agricultural sustainability
title Fertilizer use soil health and agricultural sustainability
spellingShingle Fertilizer use soil health and agricultural sustainability
Krasilnikov, Pavel
Usos
Abonos
Suelo
Sostenibilidad
Uses
Fertilizers
Soil
Sustainability
title_short Fertilizer use soil health and agricultural sustainability
title_full Fertilizer use soil health and agricultural sustainability
title_fullStr Fertilizer use soil health and agricultural sustainability
title_full_unstemmed Fertilizer use soil health and agricultural sustainability
title_sort Fertilizer use soil health and agricultural sustainability
dc.creator.none.fl_str_mv Krasilnikov, Pavel
Taboada, Miguel Angel
Amanullah
author Krasilnikov, Pavel
author_facet Krasilnikov, Pavel
Taboada, Miguel Angel
Amanullah
author_role author
author2 Taboada, Miguel Angel
Amanullah
author2_role author
author
dc.subject.none.fl_str_mv Usos
Abonos
Suelo
Sostenibilidad
Uses
Fertilizers
Soil
Sustainability
topic Usos
Abonos
Suelo
Sostenibilidad
Uses
Fertilizers
Soil
Sustainability
dc.description.none.fl_txt_mv Due to the growing population and consequent pressure of use, agricultural soils must maintain adequate levels of quantity and quality to produce food, fiber, and energy, without falling victim to a negative impact on their balance of nutrients, health, or their ability to function. The use of mineral fertilizers has long been a key tool to offset nutrient outputs and thus achieve increased yields [1–4]. Fertilizer application is believed to have been responsible for at least 50% increase in crop yield in the 20th century [5,6]. According to [5], average corn yields would decline by 40 percent without nitrogen (N) fertilizer application, while long-term studies confirmed a 40–57 percent yield decline in wheat without fertilizer application. Yousaf et al. [6] reported a 19–41% yield increase in rice, and a 61–76% increase in rapeseed with the combined application of NPK fertilizers. However, due to the inappropriate use of mineral fertilizers (i.e., when used in both excess or deficiency), mostly concerning nitrogenous and phosphate, many productive soils have been thwarted in their ability to function, as shown not only by chemical indicators but also by physical and biological ones. Thus, improper fertilizing technology might have a negative effect on soil health and soil-related ecosystem services. Imbalanced use of chemical fertilizers can alter soil pH, and increase pests attack, acidification, and soil crust, which results in a decrease in soil organic carbon and useful organisms, stunting plant growth and yield, and even leading to the emission of greenhouse gases [7,8]. Soil health is defined as the capacity of soil to function as a vital living system, within ecosystem and land-use boundaries, to sustain plant and animal health and productivity, and maintain or improve water and air quality. A major challenge for agricultural sustainability is to conserve ecosystem service delivery while optimizing agricultural yields. This Special Issue addresses the task to find a balance between increasing yields using conventional and novel fertilizers, and the maintenance of soil and environmental health as a basis for the sustainable intensification of the agricultural sector. The purpose of this issue was to provide new knowledge on fertilizer use, soil health, and agricultural sustainability. We received a total of 13 papers that provided interesting and innovative information. Five of them [9–13] were works on basic studies on the status of nutrients. These studies were based on the reviews of published works, or on experiments under controlled conditions (greenhouse and incubation) referring to nitrogen losses due to volatilization, leaching, denitrification, the distribution of nutrients, the combined or integrated use of mineral and organic fertilizers, bio-based nitrogen, or new findings in sulfur, a largely low-attended nutrient.
Fil: Krasilnikov, Pavel. Lomonosov Moscow State University. Department of Soil Geography; Rusia
Fil: Taboada, Miguel Angel. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Suelos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Amanullah. The University of Agriculture. Faculty of Crop Production Sciences. Department of Agronomy; Paquistán
description Due to the growing population and consequent pressure of use, agricultural soils must maintain adequate levels of quantity and quality to produce food, fiber, and energy, without falling victim to a negative impact on their balance of nutrients, health, or their ability to function. The use of mineral fertilizers has long been a key tool to offset nutrient outputs and thus achieve increased yields [1–4]. Fertilizer application is believed to have been responsible for at least 50% increase in crop yield in the 20th century [5,6]. According to [5], average corn yields would decline by 40 percent without nitrogen (N) fertilizer application, while long-term studies confirmed a 40–57 percent yield decline in wheat without fertilizer application. Yousaf et al. [6] reported a 19–41% yield increase in rice, and a 61–76% increase in rapeseed with the combined application of NPK fertilizers. However, due to the inappropriate use of mineral fertilizers (i.e., when used in both excess or deficiency), mostly concerning nitrogenous and phosphate, many productive soils have been thwarted in their ability to function, as shown not only by chemical indicators but also by physical and biological ones. Thus, improper fertilizing technology might have a negative effect on soil health and soil-related ecosystem services. Imbalanced use of chemical fertilizers can alter soil pH, and increase pests attack, acidification, and soil crust, which results in a decrease in soil organic carbon and useful organisms, stunting plant growth and yield, and even leading to the emission of greenhouse gases [7,8]. Soil health is defined as the capacity of soil to function as a vital living system, within ecosystem and land-use boundaries, to sustain plant and animal health and productivity, and maintain or improve water and air quality. A major challenge for agricultural sustainability is to conserve ecosystem service delivery while optimizing agricultural yields. This Special Issue addresses the task to find a balance between increasing yields using conventional and novel fertilizers, and the maintenance of soil and environmental health as a basis for the sustainable intensification of the agricultural sector. The purpose of this issue was to provide new knowledge on fertilizer use, soil health, and agricultural sustainability. We received a total of 13 papers that provided interesting and innovative information. Five of them [9–13] were works on basic studies on the status of nutrients. These studies were based on the reviews of published works, or on experiments under controlled conditions (greenhouse and incubation) referring to nitrogen losses due to volatilization, leaching, denitrification, the distribution of nutrients, the combined or integrated use of mineral and organic fertilizers, bio-based nitrogen, or new findings in sulfur, a largely low-attended nutrient.
publishDate 2022
dc.date.none.fl_str_mv 2022-10-13T14:29:25Z
2022-10-13T14:29:25Z
2022-03-25
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12123/13110
https://www.mdpi.com/2077-0472/12/4/462/htm
2077-0472
https://doi.org/10.3390/agriculture12040462
url http://hdl.handle.net/20.500.12123/13110
https://www.mdpi.com/2077-0472/12/4/462/htm
https://doi.org/10.3390/agriculture12040462
identifier_str_mv 2077-0472
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv MDPI
publisher.none.fl_str_mv MDPI
dc.source.none.fl_str_mv Agriculture 12 (4) : 462 (March 2022)
reponame:INTA Digital (INTA)
instname:Instituto Nacional de Tecnología Agropecuaria
reponame_str INTA Digital (INTA)
collection INTA Digital (INTA)
instname_str Instituto Nacional de Tecnología Agropecuaria
repository.name.fl_str_mv INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria
repository.mail.fl_str_mv tripaldi.nicolas@inta.gob.ar
_version_ 1846787563360092160
score 12.982451