Band movement and thermoregulation in Schistocerca cancellata

Autores
Piou, Cyril; Zagaglia, Gustavo; Medina, Hector E.; Trumper, Eduardo Victor; Rojo Brizuela, Ximena; Ould Maeno, Koutaro
Año de publicación
2022
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
At high density, juvenile locusts create marching hopper bands. Understanding the roles of temperature and vegetation on the movement of these bands shall allow to better forecast and control them. Following a hopper band in North Argentina in November 2019, we explored the thermoregulation behaviours of the South American locust, Schistocerca cancellata. Gut-content samples informed about the feeding status at different time of the day. Hoppers’ body temperature was above cold air temperature in the mornings during basking and group-basking activities and before the onset of marching behaviour. Marching by walking or hopping was dominant at body temperatures close to 40 ◦C. Jumping, stilting, shading and perching on plants were seen as thermoregulatory behaviours to avoid ground temperatures above 50 ◦C. Feeding was observed throughout the day with continuous high gut contents despite an intermittent pattern of feeding-resting-marching. Speed and daily travelled distance of the front of the hopper band was depending on the type of encountered vegetation. Daily behavioural patterns, thermoregulatory behaviours, walking speed and daily travelled distances of S. cancellata were similar to the ones observed for the Desert locust, S. gregaria, in Africa. High air temperatures recorded during the observation times could explain the continuous feeding patterns. These species may have evolved behaviours of alternating consuming a bit and marching as a migration strategy to avoid staying where no food is available after the havoc left behind large hopper bands. Recommendations made for the control of Desert locust hopper bands can be extended to South American locust ones.
EEA Manfredi
Fil: Piou, Cyril. Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD). Unité Mixte de Recherche Centre de Biologie pour la Gestion des Populations; Francia
Fil: Zagaglia, Gustavo. Servicio Nacional de Sanidad y Calidad Agroalimentaria (SENASA). Sede Salta; Argentina
Fil: Medina, Hector E. Servicio Nacional de Sanidad y Calidad Agroalimentaria (SENASA); Argentina
Fil: Trumper, Eduardo V. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Manfredi; Argentina
Fil: Rojo Brizuela, Ximena. Ministerio de Desarrollo Económico y Producción de la Provincia Jujuy; Argentina
Fil: Ould Maeno, Koutaro. Japan International Research Center for Agricultural Sciences (JIRCAS). Livestock and Environment Division; Japón
Fuente
Journal of Insect Physiology 136 : 104328. (January 2022)
Materia
Robinia
Locusts
Insect Control
Orthoptera
Langosta
Control de Insectos
Schistocerca
Behavioural Thermoregulation
Infrared Thermography
Mass Migration
Plant-animal Interactions
Termorregulación Conductual
Termografía Infrarroja
Migración en Masa
Interacciones Planta-animal
Schistocerca cancellata
Nivel de accesibilidad
acceso restringido
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
INTA Digital (INTA)
Institución
Instituto Nacional de Tecnología Agropecuaria
OAI Identificador
oai:localhost:20.500.12123/17812

id INTADig_63718ea8b560bb22512f8fcfc0795982
oai_identifier_str oai:localhost:20.500.12123/17812
network_acronym_str INTADig
repository_id_str l
network_name_str INTA Digital (INTA)
spelling Band movement and thermoregulation in Schistocerca cancellataPiou, CyrilZagaglia, GustavoMedina, Hector E.Trumper, Eduardo VictorRojo Brizuela, XimenaOuld Maeno, KoutaroRobiniaLocustsInsect ControlOrthopteraLangostaControl de InsectosSchistocercaBehavioural ThermoregulationInfrared ThermographyMass MigrationPlant-animal InteractionsTermorregulación ConductualTermografía InfrarrojaMigración en MasaInteracciones Planta-animalSchistocerca cancellataAt high density, juvenile locusts create marching hopper bands. Understanding the roles of temperature and vegetation on the movement of these bands shall allow to better forecast and control them. Following a hopper band in North Argentina in November 2019, we explored the thermoregulation behaviours of the South American locust, Schistocerca cancellata. Gut-content samples informed about the feeding status at different time of the day. Hoppers’ body temperature was above cold air temperature in the mornings during basking and group-basking activities and before the onset of marching behaviour. Marching by walking or hopping was dominant at body temperatures close to 40 ◦C. Jumping, stilting, shading and perching on plants were seen as thermoregulatory behaviours to avoid ground temperatures above 50 ◦C. Feeding was observed throughout the day with continuous high gut contents despite an intermittent pattern of feeding-resting-marching. Speed and daily travelled distance of the front of the hopper band was depending on the type of encountered vegetation. Daily behavioural patterns, thermoregulatory behaviours, walking speed and daily travelled distances of S. cancellata were similar to the ones observed for the Desert locust, S. gregaria, in Africa. High air temperatures recorded during the observation times could explain the continuous feeding patterns. These species may have evolved behaviours of alternating consuming a bit and marching as a migration strategy to avoid staying where no food is available after the havoc left behind large hopper bands. Recommendations made for the control of Desert locust hopper bands can be extended to South American locust ones.EEA ManfrediFil: Piou, Cyril. Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD). Unité Mixte de Recherche Centre de Biologie pour la Gestion des Populations; FranciaFil: Zagaglia, Gustavo. Servicio Nacional de Sanidad y Calidad Agroalimentaria (SENASA). Sede Salta; ArgentinaFil: Medina, Hector E. Servicio Nacional de Sanidad y Calidad Agroalimentaria (SENASA); ArgentinaFil: Trumper, Eduardo V. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Manfredi; ArgentinaFil: Rojo Brizuela, Ximena. Ministerio de Desarrollo Económico y Producción de la Provincia Jujuy; ArgentinaFil: Ould Maeno, Koutaro. Japan International Research Center for Agricultural Sciences (JIRCAS). Livestock and Environment Division; JapónElsevier2024-05-20T14:28:51Z2024-05-20T14:28:51Z2022-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12123/17812https://www.sciencedirect.com/science/article/pii/S00221910210013840022-1910 (Print)1879-1611 (Online)https://doi.org/10.1016/j.jinsphys.2021.104328Journal of Insect Physiology 136 : 104328. (January 2022)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repo/semantics/restrictedAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)2025-09-29T13:46:32Zoai:localhost:20.500.12123/17812instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-09-29 13:46:33.131INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse
dc.title.none.fl_str_mv Band movement and thermoregulation in Schistocerca cancellata
title Band movement and thermoregulation in Schistocerca cancellata
spellingShingle Band movement and thermoregulation in Schistocerca cancellata
Piou, Cyril
Robinia
Locusts
Insect Control
Orthoptera
Langosta
Control de Insectos
Schistocerca
Behavioural Thermoregulation
Infrared Thermography
Mass Migration
Plant-animal Interactions
Termorregulación Conductual
Termografía Infrarroja
Migración en Masa
Interacciones Planta-animal
Schistocerca cancellata
title_short Band movement and thermoregulation in Schistocerca cancellata
title_full Band movement and thermoregulation in Schistocerca cancellata
title_fullStr Band movement and thermoregulation in Schistocerca cancellata
title_full_unstemmed Band movement and thermoregulation in Schistocerca cancellata
title_sort Band movement and thermoregulation in Schistocerca cancellata
dc.creator.none.fl_str_mv Piou, Cyril
Zagaglia, Gustavo
Medina, Hector E.
Trumper, Eduardo Victor
Rojo Brizuela, Ximena
Ould Maeno, Koutaro
author Piou, Cyril
author_facet Piou, Cyril
Zagaglia, Gustavo
Medina, Hector E.
Trumper, Eduardo Victor
Rojo Brizuela, Ximena
Ould Maeno, Koutaro
author_role author
author2 Zagaglia, Gustavo
Medina, Hector E.
Trumper, Eduardo Victor
Rojo Brizuela, Ximena
Ould Maeno, Koutaro
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv Robinia
Locusts
Insect Control
Orthoptera
Langosta
Control de Insectos
Schistocerca
Behavioural Thermoregulation
Infrared Thermography
Mass Migration
Plant-animal Interactions
Termorregulación Conductual
Termografía Infrarroja
Migración en Masa
Interacciones Planta-animal
Schistocerca cancellata
topic Robinia
Locusts
Insect Control
Orthoptera
Langosta
Control de Insectos
Schistocerca
Behavioural Thermoregulation
Infrared Thermography
Mass Migration
Plant-animal Interactions
Termorregulación Conductual
Termografía Infrarroja
Migración en Masa
Interacciones Planta-animal
Schistocerca cancellata
dc.description.none.fl_txt_mv At high density, juvenile locusts create marching hopper bands. Understanding the roles of temperature and vegetation on the movement of these bands shall allow to better forecast and control them. Following a hopper band in North Argentina in November 2019, we explored the thermoregulation behaviours of the South American locust, Schistocerca cancellata. Gut-content samples informed about the feeding status at different time of the day. Hoppers’ body temperature was above cold air temperature in the mornings during basking and group-basking activities and before the onset of marching behaviour. Marching by walking or hopping was dominant at body temperatures close to 40 ◦C. Jumping, stilting, shading and perching on plants were seen as thermoregulatory behaviours to avoid ground temperatures above 50 ◦C. Feeding was observed throughout the day with continuous high gut contents despite an intermittent pattern of feeding-resting-marching. Speed and daily travelled distance of the front of the hopper band was depending on the type of encountered vegetation. Daily behavioural patterns, thermoregulatory behaviours, walking speed and daily travelled distances of S. cancellata were similar to the ones observed for the Desert locust, S. gregaria, in Africa. High air temperatures recorded during the observation times could explain the continuous feeding patterns. These species may have evolved behaviours of alternating consuming a bit and marching as a migration strategy to avoid staying where no food is available after the havoc left behind large hopper bands. Recommendations made for the control of Desert locust hopper bands can be extended to South American locust ones.
EEA Manfredi
Fil: Piou, Cyril. Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD). Unité Mixte de Recherche Centre de Biologie pour la Gestion des Populations; Francia
Fil: Zagaglia, Gustavo. Servicio Nacional de Sanidad y Calidad Agroalimentaria (SENASA). Sede Salta; Argentina
Fil: Medina, Hector E. Servicio Nacional de Sanidad y Calidad Agroalimentaria (SENASA); Argentina
Fil: Trumper, Eduardo V. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Manfredi; Argentina
Fil: Rojo Brizuela, Ximena. Ministerio de Desarrollo Económico y Producción de la Provincia Jujuy; Argentina
Fil: Ould Maeno, Koutaro. Japan International Research Center for Agricultural Sciences (JIRCAS). Livestock and Environment Division; Japón
description At high density, juvenile locusts create marching hopper bands. Understanding the roles of temperature and vegetation on the movement of these bands shall allow to better forecast and control them. Following a hopper band in North Argentina in November 2019, we explored the thermoregulation behaviours of the South American locust, Schistocerca cancellata. Gut-content samples informed about the feeding status at different time of the day. Hoppers’ body temperature was above cold air temperature in the mornings during basking and group-basking activities and before the onset of marching behaviour. Marching by walking or hopping was dominant at body temperatures close to 40 ◦C. Jumping, stilting, shading and perching on plants were seen as thermoregulatory behaviours to avoid ground temperatures above 50 ◦C. Feeding was observed throughout the day with continuous high gut contents despite an intermittent pattern of feeding-resting-marching. Speed and daily travelled distance of the front of the hopper band was depending on the type of encountered vegetation. Daily behavioural patterns, thermoregulatory behaviours, walking speed and daily travelled distances of S. cancellata were similar to the ones observed for the Desert locust, S. gregaria, in Africa. High air temperatures recorded during the observation times could explain the continuous feeding patterns. These species may have evolved behaviours of alternating consuming a bit and marching as a migration strategy to avoid staying where no food is available after the havoc left behind large hopper bands. Recommendations made for the control of Desert locust hopper bands can be extended to South American locust ones.
publishDate 2022
dc.date.none.fl_str_mv 2022-01
2024-05-20T14:28:51Z
2024-05-20T14:28:51Z
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12123/17812
https://www.sciencedirect.com/science/article/pii/S0022191021001384
0022-1910 (Print)
1879-1611 (Online)
https://doi.org/10.1016/j.jinsphys.2021.104328
url http://hdl.handle.net/20.500.12123/17812
https://www.sciencedirect.com/science/article/pii/S0022191021001384
https://doi.org/10.1016/j.jinsphys.2021.104328
identifier_str_mv 0022-1910 (Print)
1879-1611 (Online)
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv restrictedAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv Journal of Insect Physiology 136 : 104328. (January 2022)
reponame:INTA Digital (INTA)
instname:Instituto Nacional de Tecnología Agropecuaria
reponame_str INTA Digital (INTA)
collection INTA Digital (INTA)
instname_str Instituto Nacional de Tecnología Agropecuaria
repository.name.fl_str_mv INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria
repository.mail.fl_str_mv tripaldi.nicolas@inta.gob.ar
_version_ 1844619188346290176
score 12.559606