Gene-based model to predict heading date in wheat based on allelic characterization and environmental drivers
- Autores
- Jardón, Mariana; Alvarez Prado, Santiago; Vanzetti, Leonardo Sebastian; Gonzalez, Fernanda Gabriela; Pérez Gianmarco, Thomas; Gomez, Dionisio Tomas; Serrago, Román A.; Dubcovsky, Jorge; Fernandez Long, Maria Elena; Miralles, Daniel Julio
- Año de publicación
- 2025
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión aceptada
- Descripción
- While numerous wheat phenology prediction models are available, most of them are constrained to using variety-dependent coefficients. The overarching objective of this study was to calibrate a gene-based model to predict wheat heading date that allows breeders to select specific gene combinations that would head within the optimal window for a given environment independently of varietal genetic background. A dataset with a total of 49 Argentine wheat cultivars and two recombinant inbred lines was chosen to cover a wide range of allelic combinations for major vernalization, photoperiod, and earliness per se genes. The model was validated using independent data from an Argentine wheat trial network that includes sites from a wide latitudinal range. Ultimately, using this gene-based model, simulations were made to identify optimal gene combinations (ideotypes) × site combinations in contrasting locations. The selected model accurately predicted heading date with an overall median error of 4.6 d. This gene-based crop model for wheat phenology allowed the identification of groups of gene combinations predicted to produce heads within a low-risk window and can be adapted to predict other phenological stages based on accessible climatic information and publicly available molecular markers, facilitating its adoption in wheat-growing regions worldwide.
EEA Marcos Juárez
Fil: Jardón, Mariana. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Vegetal; Argentina
Fil: Alvarez Prado, Santiago. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Vegetal; Argentina
Fil: Alvarez Prado, Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Alvarez Prado, Santiago. Universidad Nacional de Rosario. Facultad de Ciencias Agrarias. Cátedra de Sistemas de Cultivos Extensivos-GIMUCE; Argentina
Fil: Vanzetti, Leonardo Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Vanzetti, Leonardo Sebastian. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Marcos Juárez; Argentina
Fil: González, Fernanda G. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Pergamino. Departamento de Ecofisiología; Argentina
Fil: González, Fernanda G. Universidad Nacional del Noroeste de la Provincia de Buenos Aires (UNNOBA). Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CITNOBA, CONICET-UNNOBA); Argentina
Fil: González, Fernanda G. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CITNOBA, CONICET-UNNOBA); Argentina
Fil: Pérez Gianmarco, Thomas. Universidad Nacional del Noroeste de la Provincia de Buenos Aires (UNNOBA). Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CITNOBA, CONICET-UNNOBA); Argentina
Fil: Pérez Gianmarco, Thomas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CITNOBA, CONICET-UNNOBA); Argentina
Fil: Gómez, Dionisio Tomás. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Marcos Juárez; Argentina
Fil: Serrago, Román A. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Vegetal; Argentina
Fil: Serrago, Román A. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Dubcovsky, Jorge. University of California-Davis. Department of Plant Sciences; Estados Unidos
Fil: Dubcovsky, Jorge. Howard Hughes Medical Institute; Estados Unidos
Fil: Fernández Long, M.E. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Vegetal; Argentina
Fil: Fernández Long, M.E. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Miralles, Daniel J. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Vegetal; Argentina
Fil: Miralles, Daniel J. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Fuente
- Journal of Experimental Botany : eraf049. (Published: 07 February 2025)
- Materia
-
Trigo
Espigueo
Interacción Genotipo Ambiente
Fotoperiodismo
Fisiología Vegetal
Vernalización
Wheat
Heading
Genotype-environment Interaction
Photoperiodicity
Plant Physiology
Vernalization - Nivel de accesibilidad
- acceso restringido
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Instituto Nacional de Tecnología Agropecuaria
- OAI Identificador
- oai:localhost:20.500.12123/21626
Ver los metadatos del registro completo
id |
INTADig_62ff7c46f935dda467a644b92ea0a6c8 |
---|---|
oai_identifier_str |
oai:localhost:20.500.12123/21626 |
network_acronym_str |
INTADig |
repository_id_str |
l |
network_name_str |
INTA Digital (INTA) |
spelling |
Gene-based model to predict heading date in wheat based on allelic characterization and environmental driversJardón, MarianaAlvarez Prado, SantiagoVanzetti, Leonardo SebastianGonzalez, Fernanda GabrielaPérez Gianmarco, ThomasGomez, Dionisio TomasSerrago, Román A.Dubcovsky, JorgeFernandez Long, Maria ElenaMiralles, Daniel JulioTrigoEspigueoInteracción Genotipo AmbienteFotoperiodismoFisiología VegetalVernalizaciónWheatHeadingGenotype-environment InteractionPhotoperiodicityPlant PhysiologyVernalizationWhile numerous wheat phenology prediction models are available, most of them are constrained to using variety-dependent coefficients. The overarching objective of this study was to calibrate a gene-based model to predict wheat heading date that allows breeders to select specific gene combinations that would head within the optimal window for a given environment independently of varietal genetic background. A dataset with a total of 49 Argentine wheat cultivars and two recombinant inbred lines was chosen to cover a wide range of allelic combinations for major vernalization, photoperiod, and earliness per se genes. The model was validated using independent data from an Argentine wheat trial network that includes sites from a wide latitudinal range. Ultimately, using this gene-based model, simulations were made to identify optimal gene combinations (ideotypes) × site combinations in contrasting locations. The selected model accurately predicted heading date with an overall median error of 4.6 d. This gene-based crop model for wheat phenology allowed the identification of groups of gene combinations predicted to produce heads within a low-risk window and can be adapted to predict other phenological stages based on accessible climatic information and publicly available molecular markers, facilitating its adoption in wheat-growing regions worldwide.EEA Marcos JuárezFil: Jardón, Mariana. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Vegetal; ArgentinaFil: Alvarez Prado, Santiago. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Vegetal; ArgentinaFil: Alvarez Prado, Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Alvarez Prado, Santiago. Universidad Nacional de Rosario. Facultad de Ciencias Agrarias. Cátedra de Sistemas de Cultivos Extensivos-GIMUCE; ArgentinaFil: Vanzetti, Leonardo Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Vanzetti, Leonardo Sebastian. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Marcos Juárez; ArgentinaFil: González, Fernanda G. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Pergamino. Departamento de Ecofisiología; ArgentinaFil: González, Fernanda G. Universidad Nacional del Noroeste de la Provincia de Buenos Aires (UNNOBA). Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CITNOBA, CONICET-UNNOBA); ArgentinaFil: González, Fernanda G. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CITNOBA, CONICET-UNNOBA); ArgentinaFil: Pérez Gianmarco, Thomas. Universidad Nacional del Noroeste de la Provincia de Buenos Aires (UNNOBA). Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CITNOBA, CONICET-UNNOBA); ArgentinaFil: Pérez Gianmarco, Thomas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CITNOBA, CONICET-UNNOBA); ArgentinaFil: Gómez, Dionisio Tomás. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Marcos Juárez; ArgentinaFil: Serrago, Román A. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Vegetal; ArgentinaFil: Serrago, Román A. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Dubcovsky, Jorge. University of California-Davis. Department of Plant Sciences; Estados UnidosFil: Dubcovsky, Jorge. Howard Hughes Medical Institute; Estados UnidosFil: Fernández Long, M.E. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Vegetal; ArgentinaFil: Fernández Long, M.E. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Miralles, Daniel J. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Vegetal; ArgentinaFil: Miralles, Daniel J. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaOxford University Pressinfo:eu-repo/date/embargoEnd/2026-03-122025-03-12T11:56:27Z2025-03-12T11:56:27Z2025-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12123/21626https://academic.oup.com/jxb/advance-article-abstract/doi/10.1093/jxb/eraf049/80050220022-09571460-2431https://doi.org/10.1093/jxb/eraf049Journal of Experimental Botany : eraf049. (Published: 07 February 2025)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repo/semantics/restrictedAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)2025-09-29T13:47:11Zoai:localhost:20.500.12123/21626instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-09-29 13:47:12.137INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse |
dc.title.none.fl_str_mv |
Gene-based model to predict heading date in wheat based on allelic characterization and environmental drivers |
title |
Gene-based model to predict heading date in wheat based on allelic characterization and environmental drivers |
spellingShingle |
Gene-based model to predict heading date in wheat based on allelic characterization and environmental drivers Jardón, Mariana Trigo Espigueo Interacción Genotipo Ambiente Fotoperiodismo Fisiología Vegetal Vernalización Wheat Heading Genotype-environment Interaction Photoperiodicity Plant Physiology Vernalization |
title_short |
Gene-based model to predict heading date in wheat based on allelic characterization and environmental drivers |
title_full |
Gene-based model to predict heading date in wheat based on allelic characterization and environmental drivers |
title_fullStr |
Gene-based model to predict heading date in wheat based on allelic characterization and environmental drivers |
title_full_unstemmed |
Gene-based model to predict heading date in wheat based on allelic characterization and environmental drivers |
title_sort |
Gene-based model to predict heading date in wheat based on allelic characterization and environmental drivers |
dc.creator.none.fl_str_mv |
Jardón, Mariana Alvarez Prado, Santiago Vanzetti, Leonardo Sebastian Gonzalez, Fernanda Gabriela Pérez Gianmarco, Thomas Gomez, Dionisio Tomas Serrago, Román A. Dubcovsky, Jorge Fernandez Long, Maria Elena Miralles, Daniel Julio |
author |
Jardón, Mariana |
author_facet |
Jardón, Mariana Alvarez Prado, Santiago Vanzetti, Leonardo Sebastian Gonzalez, Fernanda Gabriela Pérez Gianmarco, Thomas Gomez, Dionisio Tomas Serrago, Román A. Dubcovsky, Jorge Fernandez Long, Maria Elena Miralles, Daniel Julio |
author_role |
author |
author2 |
Alvarez Prado, Santiago Vanzetti, Leonardo Sebastian Gonzalez, Fernanda Gabriela Pérez Gianmarco, Thomas Gomez, Dionisio Tomas Serrago, Román A. Dubcovsky, Jorge Fernandez Long, Maria Elena Miralles, Daniel Julio |
author2_role |
author author author author author author author author author |
dc.subject.none.fl_str_mv |
Trigo Espigueo Interacción Genotipo Ambiente Fotoperiodismo Fisiología Vegetal Vernalización Wheat Heading Genotype-environment Interaction Photoperiodicity Plant Physiology Vernalization |
topic |
Trigo Espigueo Interacción Genotipo Ambiente Fotoperiodismo Fisiología Vegetal Vernalización Wheat Heading Genotype-environment Interaction Photoperiodicity Plant Physiology Vernalization |
dc.description.none.fl_txt_mv |
While numerous wheat phenology prediction models are available, most of them are constrained to using variety-dependent coefficients. The overarching objective of this study was to calibrate a gene-based model to predict wheat heading date that allows breeders to select specific gene combinations that would head within the optimal window for a given environment independently of varietal genetic background. A dataset with a total of 49 Argentine wheat cultivars and two recombinant inbred lines was chosen to cover a wide range of allelic combinations for major vernalization, photoperiod, and earliness per se genes. The model was validated using independent data from an Argentine wheat trial network that includes sites from a wide latitudinal range. Ultimately, using this gene-based model, simulations were made to identify optimal gene combinations (ideotypes) × site combinations in contrasting locations. The selected model accurately predicted heading date with an overall median error of 4.6 d. This gene-based crop model for wheat phenology allowed the identification of groups of gene combinations predicted to produce heads within a low-risk window and can be adapted to predict other phenological stages based on accessible climatic information and publicly available molecular markers, facilitating its adoption in wheat-growing regions worldwide. EEA Marcos Juárez Fil: Jardón, Mariana. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Vegetal; Argentina Fil: Alvarez Prado, Santiago. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Vegetal; Argentina Fil: Alvarez Prado, Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Alvarez Prado, Santiago. Universidad Nacional de Rosario. Facultad de Ciencias Agrarias. Cátedra de Sistemas de Cultivos Extensivos-GIMUCE; Argentina Fil: Vanzetti, Leonardo Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Vanzetti, Leonardo Sebastian. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Marcos Juárez; Argentina Fil: González, Fernanda G. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Pergamino. Departamento de Ecofisiología; Argentina Fil: González, Fernanda G. Universidad Nacional del Noroeste de la Provincia de Buenos Aires (UNNOBA). Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CITNOBA, CONICET-UNNOBA); Argentina Fil: González, Fernanda G. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CITNOBA, CONICET-UNNOBA); Argentina Fil: Pérez Gianmarco, Thomas. Universidad Nacional del Noroeste de la Provincia de Buenos Aires (UNNOBA). Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CITNOBA, CONICET-UNNOBA); Argentina Fil: Pérez Gianmarco, Thomas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CITNOBA, CONICET-UNNOBA); Argentina Fil: Gómez, Dionisio Tomás. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Marcos Juárez; Argentina Fil: Serrago, Román A. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Vegetal; Argentina Fil: Serrago, Román A. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Dubcovsky, Jorge. University of California-Davis. Department of Plant Sciences; Estados Unidos Fil: Dubcovsky, Jorge. Howard Hughes Medical Institute; Estados Unidos Fil: Fernández Long, M.E. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Vegetal; Argentina Fil: Fernández Long, M.E. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Miralles, Daniel J. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Vegetal; Argentina Fil: Miralles, Daniel J. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
While numerous wheat phenology prediction models are available, most of them are constrained to using variety-dependent coefficients. The overarching objective of this study was to calibrate a gene-based model to predict wheat heading date that allows breeders to select specific gene combinations that would head within the optimal window for a given environment independently of varietal genetic background. A dataset with a total of 49 Argentine wheat cultivars and two recombinant inbred lines was chosen to cover a wide range of allelic combinations for major vernalization, photoperiod, and earliness per se genes. The model was validated using independent data from an Argentine wheat trial network that includes sites from a wide latitudinal range. Ultimately, using this gene-based model, simulations were made to identify optimal gene combinations (ideotypes) × site combinations in contrasting locations. The selected model accurately predicted heading date with an overall median error of 4.6 d. This gene-based crop model for wheat phenology allowed the identification of groups of gene combinations predicted to produce heads within a low-risk window and can be adapted to predict other phenological stages based on accessible climatic information and publicly available molecular markers, facilitating its adoption in wheat-growing regions worldwide. |
publishDate |
2025 |
dc.date.none.fl_str_mv |
2025-03-12T11:56:27Z 2025-03-12T11:56:27Z 2025-02 info:eu-repo/date/embargoEnd/2026-03-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/acceptedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
acceptedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12123/21626 https://academic.oup.com/jxb/advance-article-abstract/doi/10.1093/jxb/eraf049/8005022 0022-0957 1460-2431 https://doi.org/10.1093/jxb/eraf049 |
url |
http://hdl.handle.net/20.500.12123/21626 https://academic.oup.com/jxb/advance-article-abstract/doi/10.1093/jxb/eraf049/8005022 https://doi.org/10.1093/jxb/eraf049 |
identifier_str_mv |
0022-0957 1460-2431 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
restrictedAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Oxford University Press |
publisher.none.fl_str_mv |
Oxford University Press |
dc.source.none.fl_str_mv |
Journal of Experimental Botany : eraf049. (Published: 07 February 2025) reponame:INTA Digital (INTA) instname:Instituto Nacional de Tecnología Agropecuaria |
reponame_str |
INTA Digital (INTA) |
collection |
INTA Digital (INTA) |
instname_str |
Instituto Nacional de Tecnología Agropecuaria |
repository.name.fl_str_mv |
INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria |
repository.mail.fl_str_mv |
tripaldi.nicolas@inta.gob.ar |
_version_ |
1844619201652719616 |
score |
12.559606 |