Modeling seed dormancy release and germination for predicting Avena fatua L. field emergence: A genetic algorithm approach
- Autores
- Blanco, Anibal Manuel; Chantre Balacca, Guillermo Ruben; Lodovichi, Mariela Victoria; Bandoni, Jose Alberto; Lopez, Ricardo Luis; Vigna, Mario Raul; Gigon, Ramon; Sabbatini, Mario Ricardo
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Avena fatua is a cosmopolite weed species which produces severe yield losses in small-grain production systems in temperate and semiarid climates. In the semiarid region of Argentina, A. fatua field emergence patterns show great year-to-year variability mainly due to the effect of highly unpredictable precipitation regimes as well as a complex seedbank dormancy behavior regulated by both, genetic and environmental factors. Previously developed models for the same agroecological system based on Non-Linear Regression techniques (NLR) and Artificial Neural Networks (ANN) were either unable to accurately predict field emergence or lacked explanatory power. The main objective of the present work is to develop a simple (i.e. parsimonious) model for A. fatua field emergence prediction for the semiarid region of Argentina based on the disaggregation of the dormancy release phase from the germination/pre-emergence growth processes, using easy accessible soil microclimate derived indices as input variables and observed cumulative field emergence data as output variable. The parsimony and predictive capability of the newly developed model were compared with NLR and ANN approaches developed by the same authors for the same agroecological system. Specifically, dormancy release was modeled as a logistic function of an after-ripening thermal-time index while germination/pre-emergence growth was represented by a logistic distribution of hydrothermal-time accumulation. A total of 528 input/output data pairs corresponding to 11 years of data collection were used in this study. Due to its implementation simplicity and good convergence features, a Genetic Algorithm (GA) was adopted to solve the resulting optimization problem consisting on the minimization of the Mean Square Error (MSE) between training data and experimentally obtained field emergence data. The newly developed GA based approach resulted in a significantly more parsimonious model (BIC = −1.54) compared to ANN (BIC = −1.36) and NLR (BIC = −1.32) models. Model evaluation with independent data also showed a better predictive capacity of the GA approach (RMSE = 0.07) compared to NLR (RMSE = 0.19) and ANN (RMSE = 0.11) alternatives. These outcomes suggest the potential applicability of the proposed predictive tool in weed management decision support systems design.
EEA Bordenave
Fil: Blanco, Anibal Manuel. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnol.conicet - Bahia Blanca. Planta Piloto de Ingenieria Quimica (i). Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
Fil: Chantre Balacca, Guillermo Ruben. Universidad Nacional del Sur. Departamento de Agronomía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida; Argentina
Fil: Lodovichi, Mariela Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida; Argentina. Universidad Nacional del Sur. Departamento de Agronomía; Argentina
Fil: Bandoni, Jose Alberto. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnol.conicet - Bahia Blanca. Planta Piloto de Ingenieria Quimica (i). Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
Fil: López, Ricardo Luis. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bordenave; Argentina
Fil: Vigna, Mario Raúl. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bordenave; Argentina
Fil: Gigón, Ramón. Instituto Nacional de Tecnología Agropecuaria (INTA). Chacra Experimental Integrada Barrow; Argentina
Fil: Sabbatini, Mario Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida; Argentina. Universidad Nacional del Sur. Departamento de Agronomía; Argentina - Fuente
- Ecological Modelling 272 : 293-300 (January 2014)
- Materia
-
Avena Fatua
Malezas
Genética
Dormición
Germinación
Weeds
Genetics
Dormancy
Germination - Nivel de accesibilidad
- acceso restringido
- Condiciones de uso
- Repositorio
- Institución
- Instituto Nacional de Tecnología Agropecuaria
- OAI Identificador
- oai:localhost:20.500.12123/2886
Ver los metadatos del registro completo
id |
INTADig_5a5fcbe78d9325e84cb2603f2529f801 |
---|---|
oai_identifier_str |
oai:localhost:20.500.12123/2886 |
network_acronym_str |
INTADig |
repository_id_str |
l |
network_name_str |
INTA Digital (INTA) |
spelling |
Modeling seed dormancy release and germination for predicting Avena fatua L. field emergence: A genetic algorithm approachBlanco, Anibal ManuelChantre Balacca, Guillermo RubenLodovichi, Mariela VictoriaBandoni, Jose AlbertoLopez, Ricardo LuisVigna, Mario RaulGigon, RamonSabbatini, Mario RicardoAvena FatuaMalezasGenéticaDormiciónGerminaciónWeedsGeneticsDormancyGerminationAvena fatua is a cosmopolite weed species which produces severe yield losses in small-grain production systems in temperate and semiarid climates. In the semiarid region of Argentina, A. fatua field emergence patterns show great year-to-year variability mainly due to the effect of highly unpredictable precipitation regimes as well as a complex seedbank dormancy behavior regulated by both, genetic and environmental factors. Previously developed models for the same agroecological system based on Non-Linear Regression techniques (NLR) and Artificial Neural Networks (ANN) were either unable to accurately predict field emergence or lacked explanatory power. The main objective of the present work is to develop a simple (i.e. parsimonious) model for A. fatua field emergence prediction for the semiarid region of Argentina based on the disaggregation of the dormancy release phase from the germination/pre-emergence growth processes, using easy accessible soil microclimate derived indices as input variables and observed cumulative field emergence data as output variable. The parsimony and predictive capability of the newly developed model were compared with NLR and ANN approaches developed by the same authors for the same agroecological system. Specifically, dormancy release was modeled as a logistic function of an after-ripening thermal-time index while germination/pre-emergence growth was represented by a logistic distribution of hydrothermal-time accumulation. A total of 528 input/output data pairs corresponding to 11 years of data collection were used in this study. Due to its implementation simplicity and good convergence features, a Genetic Algorithm (GA) was adopted to solve the resulting optimization problem consisting on the minimization of the Mean Square Error (MSE) between training data and experimentally obtained field emergence data. The newly developed GA based approach resulted in a significantly more parsimonious model (BIC = −1.54) compared to ANN (BIC = −1.36) and NLR (BIC = −1.32) models. Model evaluation with independent data also showed a better predictive capacity of the GA approach (RMSE = 0.07) compared to NLR (RMSE = 0.19) and ANN (RMSE = 0.11) alternatives. These outcomes suggest the potential applicability of the proposed predictive tool in weed management decision support systems design.EEA BordenaveFil: Blanco, Anibal Manuel. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnol.conicet - Bahia Blanca. Planta Piloto de Ingenieria Quimica (i). Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; ArgentinaFil: Chantre Balacca, Guillermo Ruben. Universidad Nacional del Sur. Departamento de Agronomía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida; ArgentinaFil: Lodovichi, Mariela Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida; Argentina. Universidad Nacional del Sur. Departamento de Agronomía; ArgentinaFil: Bandoni, Jose Alberto. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnol.conicet - Bahia Blanca. Planta Piloto de Ingenieria Quimica (i). Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; ArgentinaFil: López, Ricardo Luis. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bordenave; ArgentinaFil: Vigna, Mario Raúl. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bordenave; ArgentinaFil: Gigón, Ramón. Instituto Nacional de Tecnología Agropecuaria (INTA). Chacra Experimental Integrada Barrow; ArgentinaFil: Sabbatini, Mario Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida; Argentina. Universidad Nacional del Sur. Departamento de Agronomía; Argentina2018-07-26T13:56:23Z2018-07-26T13:56:23Z2014-01-24info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttps://www.sciencedirect.com/science/article/pii/S0304380013004808http://hdl.handle.net/20.500.12123/28860304-3800https://doi.org/10.1016/j.ecolmodel.2013.10.013Ecological Modelling 272 : 293-300 (January 2014)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repo/semantics/restrictedAccess2025-09-29T13:44:22Zoai:localhost:20.500.12123/2886instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-09-29 13:44:22.952INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse |
dc.title.none.fl_str_mv |
Modeling seed dormancy release and germination for predicting Avena fatua L. field emergence: A genetic algorithm approach |
title |
Modeling seed dormancy release and germination for predicting Avena fatua L. field emergence: A genetic algorithm approach |
spellingShingle |
Modeling seed dormancy release and germination for predicting Avena fatua L. field emergence: A genetic algorithm approach Blanco, Anibal Manuel Avena Fatua Malezas Genética Dormición Germinación Weeds Genetics Dormancy Germination |
title_short |
Modeling seed dormancy release and germination for predicting Avena fatua L. field emergence: A genetic algorithm approach |
title_full |
Modeling seed dormancy release and germination for predicting Avena fatua L. field emergence: A genetic algorithm approach |
title_fullStr |
Modeling seed dormancy release and germination for predicting Avena fatua L. field emergence: A genetic algorithm approach |
title_full_unstemmed |
Modeling seed dormancy release and germination for predicting Avena fatua L. field emergence: A genetic algorithm approach |
title_sort |
Modeling seed dormancy release and germination for predicting Avena fatua L. field emergence: A genetic algorithm approach |
dc.creator.none.fl_str_mv |
Blanco, Anibal Manuel Chantre Balacca, Guillermo Ruben Lodovichi, Mariela Victoria Bandoni, Jose Alberto Lopez, Ricardo Luis Vigna, Mario Raul Gigon, Ramon Sabbatini, Mario Ricardo |
author |
Blanco, Anibal Manuel |
author_facet |
Blanco, Anibal Manuel Chantre Balacca, Guillermo Ruben Lodovichi, Mariela Victoria Bandoni, Jose Alberto Lopez, Ricardo Luis Vigna, Mario Raul Gigon, Ramon Sabbatini, Mario Ricardo |
author_role |
author |
author2 |
Chantre Balacca, Guillermo Ruben Lodovichi, Mariela Victoria Bandoni, Jose Alberto Lopez, Ricardo Luis Vigna, Mario Raul Gigon, Ramon Sabbatini, Mario Ricardo |
author2_role |
author author author author author author author |
dc.subject.none.fl_str_mv |
Avena Fatua Malezas Genética Dormición Germinación Weeds Genetics Dormancy Germination |
topic |
Avena Fatua Malezas Genética Dormición Germinación Weeds Genetics Dormancy Germination |
dc.description.none.fl_txt_mv |
Avena fatua is a cosmopolite weed species which produces severe yield losses in small-grain production systems in temperate and semiarid climates. In the semiarid region of Argentina, A. fatua field emergence patterns show great year-to-year variability mainly due to the effect of highly unpredictable precipitation regimes as well as a complex seedbank dormancy behavior regulated by both, genetic and environmental factors. Previously developed models for the same agroecological system based on Non-Linear Regression techniques (NLR) and Artificial Neural Networks (ANN) were either unable to accurately predict field emergence or lacked explanatory power. The main objective of the present work is to develop a simple (i.e. parsimonious) model for A. fatua field emergence prediction for the semiarid region of Argentina based on the disaggregation of the dormancy release phase from the germination/pre-emergence growth processes, using easy accessible soil microclimate derived indices as input variables and observed cumulative field emergence data as output variable. The parsimony and predictive capability of the newly developed model were compared with NLR and ANN approaches developed by the same authors for the same agroecological system. Specifically, dormancy release was modeled as a logistic function of an after-ripening thermal-time index while germination/pre-emergence growth was represented by a logistic distribution of hydrothermal-time accumulation. A total of 528 input/output data pairs corresponding to 11 years of data collection were used in this study. Due to its implementation simplicity and good convergence features, a Genetic Algorithm (GA) was adopted to solve the resulting optimization problem consisting on the minimization of the Mean Square Error (MSE) between training data and experimentally obtained field emergence data. The newly developed GA based approach resulted in a significantly more parsimonious model (BIC = −1.54) compared to ANN (BIC = −1.36) and NLR (BIC = −1.32) models. Model evaluation with independent data also showed a better predictive capacity of the GA approach (RMSE = 0.07) compared to NLR (RMSE = 0.19) and ANN (RMSE = 0.11) alternatives. These outcomes suggest the potential applicability of the proposed predictive tool in weed management decision support systems design. EEA Bordenave Fil: Blanco, Anibal Manuel. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnol.conicet - Bahia Blanca. Planta Piloto de Ingenieria Quimica (i). Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina Fil: Chantre Balacca, Guillermo Ruben. Universidad Nacional del Sur. Departamento de Agronomía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida; Argentina Fil: Lodovichi, Mariela Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida; Argentina. Universidad Nacional del Sur. Departamento de Agronomía; Argentina Fil: Bandoni, Jose Alberto. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnol.conicet - Bahia Blanca. Planta Piloto de Ingenieria Quimica (i). Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina Fil: López, Ricardo Luis. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bordenave; Argentina Fil: Vigna, Mario Raúl. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bordenave; Argentina Fil: Gigón, Ramón. Instituto Nacional de Tecnología Agropecuaria (INTA). Chacra Experimental Integrada Barrow; Argentina Fil: Sabbatini, Mario Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida; Argentina. Universidad Nacional del Sur. Departamento de Agronomía; Argentina |
description |
Avena fatua is a cosmopolite weed species which produces severe yield losses in small-grain production systems in temperate and semiarid climates. In the semiarid region of Argentina, A. fatua field emergence patterns show great year-to-year variability mainly due to the effect of highly unpredictable precipitation regimes as well as a complex seedbank dormancy behavior regulated by both, genetic and environmental factors. Previously developed models for the same agroecological system based on Non-Linear Regression techniques (NLR) and Artificial Neural Networks (ANN) were either unable to accurately predict field emergence or lacked explanatory power. The main objective of the present work is to develop a simple (i.e. parsimonious) model for A. fatua field emergence prediction for the semiarid region of Argentina based on the disaggregation of the dormancy release phase from the germination/pre-emergence growth processes, using easy accessible soil microclimate derived indices as input variables and observed cumulative field emergence data as output variable. The parsimony and predictive capability of the newly developed model were compared with NLR and ANN approaches developed by the same authors for the same agroecological system. Specifically, dormancy release was modeled as a logistic function of an after-ripening thermal-time index while germination/pre-emergence growth was represented by a logistic distribution of hydrothermal-time accumulation. A total of 528 input/output data pairs corresponding to 11 years of data collection were used in this study. Due to its implementation simplicity and good convergence features, a Genetic Algorithm (GA) was adopted to solve the resulting optimization problem consisting on the minimization of the Mean Square Error (MSE) between training data and experimentally obtained field emergence data. The newly developed GA based approach resulted in a significantly more parsimonious model (BIC = −1.54) compared to ANN (BIC = −1.36) and NLR (BIC = −1.32) models. Model evaluation with independent data also showed a better predictive capacity of the GA approach (RMSE = 0.07) compared to NLR (RMSE = 0.19) and ANN (RMSE = 0.11) alternatives. These outcomes suggest the potential applicability of the proposed predictive tool in weed management decision support systems design. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-01-24 2018-07-26T13:56:23Z 2018-07-26T13:56:23Z |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
https://www.sciencedirect.com/science/article/pii/S0304380013004808 http://hdl.handle.net/20.500.12123/2886 0304-3800 https://doi.org/10.1016/j.ecolmodel.2013.10.013 |
url |
https://www.sciencedirect.com/science/article/pii/S0304380013004808 http://hdl.handle.net/20.500.12123/2886 https://doi.org/10.1016/j.ecolmodel.2013.10.013 |
identifier_str_mv |
0304-3800 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
eu_rights_str_mv |
restrictedAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
Ecological Modelling 272 : 293-300 (January 2014) reponame:INTA Digital (INTA) instname:Instituto Nacional de Tecnología Agropecuaria |
reponame_str |
INTA Digital (INTA) |
collection |
INTA Digital (INTA) |
instname_str |
Instituto Nacional de Tecnología Agropecuaria |
repository.name.fl_str_mv |
INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria |
repository.mail.fl_str_mv |
tripaldi.nicolas@inta.gob.ar |
_version_ |
1844619124305559552 |
score |
12.559606 |