pBAR–H3.2, a native-optimized binary vector to bypass transgene silencing in alfalfa
- Autores
- Pascuan, Cecilia Gabriela; Bottero, Ana Emilia; Kapros, Tamas; Ayub, Nicolás Daniel; Soto, Gabriela Cynthia
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Alfalfa is the main forage worldwide due to its high biomass production, excellent nutritional qualities and adaptation to a wide range of environments (Singer et al. 2018). Besides, due to its ability to grow without nitrogen fertilizers derived from fossil fuels and conditions of long-duration perennial crop, alfalfa is a natural candidate for large production of renewable raw materials and vaccines at extremely low cost (Aguirreburualde et al. 2013; Saruul et al. 2002). However, the potential impact of alfalfa in agroindustrial processes is limited by strong transgene silencing. In the absence of genetic tools to bypass this constraint, the identification of alfalfa events with suitable transgene expression for commercial uses (e.g., high expression of transgenic traits) requires the production and analysis of a large number (e.g., 2000–3000) of transgenic events (Barros et al. 2019; Jozefkowicz et al. 2018; McCaslin et al. 2002). Naturally, this is an expensive empirical approach restricted to projects with high budget.
Instituto de Genética
Fil: Pascuan, Cecilia Gabriela. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Genética e Instituto de Biotecnología; Argentina
Fil: Bottero, Ana Emilia. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Genética e Instituto de Biotecnología; Argentina
Fil: Kapros, Tamas. University of Missouri-Kansas City. School of Biological and Chemical Sciences; Estados Unidos
Fil: Ayub, Nicolás Daniel. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Genética e Instituto de Biotecnología; Argentina
Fil: Soto, Gabriela Cynthia. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Genética e Instituto de Biotecnología; Argentina - Fuente
- Plant Cell Reports 39 : 683–685 (2020)
- Materia
-
Medicago sativa
Genética
Plantas Transgénicas
Vectores
Genetics
Transgenic Plants
Vectors
Alfalfa
Lucerne - Nivel de accesibilidad
- acceso restringido
- Condiciones de uso
- Repositorio
- Institución
- Instituto Nacional de Tecnología Agropecuaria
- OAI Identificador
- oai:localhost:20.500.12123/7732
Ver los metadatos del registro completo
id |
INTADig_536817d3a40220b56703a1076f05ebe1 |
---|---|
oai_identifier_str |
oai:localhost:20.500.12123/7732 |
network_acronym_str |
INTADig |
repository_id_str |
l |
network_name_str |
INTA Digital (INTA) |
spelling |
pBAR–H3.2, a native-optimized binary vector to bypass transgene silencing in alfalfaPascuan, Cecilia GabrielaBottero, Ana EmiliaKapros, TamasAyub, Nicolás DanielSoto, Gabriela CynthiaMedicago sativaGenéticaPlantas TransgénicasVectoresGeneticsTransgenic PlantsVectorsAlfalfaLucerneAlfalfa is the main forage worldwide due to its high biomass production, excellent nutritional qualities and adaptation to a wide range of environments (Singer et al. 2018). Besides, due to its ability to grow without nitrogen fertilizers derived from fossil fuels and conditions of long-duration perennial crop, alfalfa is a natural candidate for large production of renewable raw materials and vaccines at extremely low cost (Aguirreburualde et al. 2013; Saruul et al. 2002). However, the potential impact of alfalfa in agroindustrial processes is limited by strong transgene silencing. In the absence of genetic tools to bypass this constraint, the identification of alfalfa events with suitable transgene expression for commercial uses (e.g., high expression of transgenic traits) requires the production and analysis of a large number (e.g., 2000–3000) of transgenic events (Barros et al. 2019; Jozefkowicz et al. 2018; McCaslin et al. 2002). Naturally, this is an expensive empirical approach restricted to projects with high budget.Instituto de GenéticaFil: Pascuan, Cecilia Gabriela. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Genética e Instituto de Biotecnología; ArgentinaFil: Bottero, Ana Emilia. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Genética e Instituto de Biotecnología; ArgentinaFil: Kapros, Tamas. University of Missouri-Kansas City. School of Biological and Chemical Sciences; Estados UnidosFil: Ayub, Nicolás Daniel. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Genética e Instituto de Biotecnología; ArgentinaFil: Soto, Gabriela Cynthia. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Genética e Instituto de Biotecnología; ArgentinaSpringer2020-08-18T14:50:48Z2020-08-18T14:50:48Z2020-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12123/7732https://link.springer.com/article/10.1007/s00299-020-02521-30721-77141432-203Xhttps://doi.org/10.1007/s00299-020-02521-3Plant Cell Reports 39 : 683–685 (2020)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repo/semantics/restrictedAccess2025-09-29T13:44:59Zoai:localhost:20.500.12123/7732instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-09-29 13:45:00.311INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse |
dc.title.none.fl_str_mv |
pBAR–H3.2, a native-optimized binary vector to bypass transgene silencing in alfalfa |
title |
pBAR–H3.2, a native-optimized binary vector to bypass transgene silencing in alfalfa |
spellingShingle |
pBAR–H3.2, a native-optimized binary vector to bypass transgene silencing in alfalfa Pascuan, Cecilia Gabriela Medicago sativa Genética Plantas Transgénicas Vectores Genetics Transgenic Plants Vectors Alfalfa Lucerne |
title_short |
pBAR–H3.2, a native-optimized binary vector to bypass transgene silencing in alfalfa |
title_full |
pBAR–H3.2, a native-optimized binary vector to bypass transgene silencing in alfalfa |
title_fullStr |
pBAR–H3.2, a native-optimized binary vector to bypass transgene silencing in alfalfa |
title_full_unstemmed |
pBAR–H3.2, a native-optimized binary vector to bypass transgene silencing in alfalfa |
title_sort |
pBAR–H3.2, a native-optimized binary vector to bypass transgene silencing in alfalfa |
dc.creator.none.fl_str_mv |
Pascuan, Cecilia Gabriela Bottero, Ana Emilia Kapros, Tamas Ayub, Nicolás Daniel Soto, Gabriela Cynthia |
author |
Pascuan, Cecilia Gabriela |
author_facet |
Pascuan, Cecilia Gabriela Bottero, Ana Emilia Kapros, Tamas Ayub, Nicolás Daniel Soto, Gabriela Cynthia |
author_role |
author |
author2 |
Bottero, Ana Emilia Kapros, Tamas Ayub, Nicolás Daniel Soto, Gabriela Cynthia |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Medicago sativa Genética Plantas Transgénicas Vectores Genetics Transgenic Plants Vectors Alfalfa Lucerne |
topic |
Medicago sativa Genética Plantas Transgénicas Vectores Genetics Transgenic Plants Vectors Alfalfa Lucerne |
dc.description.none.fl_txt_mv |
Alfalfa is the main forage worldwide due to its high biomass production, excellent nutritional qualities and adaptation to a wide range of environments (Singer et al. 2018). Besides, due to its ability to grow without nitrogen fertilizers derived from fossil fuels and conditions of long-duration perennial crop, alfalfa is a natural candidate for large production of renewable raw materials and vaccines at extremely low cost (Aguirreburualde et al. 2013; Saruul et al. 2002). However, the potential impact of alfalfa in agroindustrial processes is limited by strong transgene silencing. In the absence of genetic tools to bypass this constraint, the identification of alfalfa events with suitable transgene expression for commercial uses (e.g., high expression of transgenic traits) requires the production and analysis of a large number (e.g., 2000–3000) of transgenic events (Barros et al. 2019; Jozefkowicz et al. 2018; McCaslin et al. 2002). Naturally, this is an expensive empirical approach restricted to projects with high budget. Instituto de Genética Fil: Pascuan, Cecilia Gabriela. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Genética e Instituto de Biotecnología; Argentina Fil: Bottero, Ana Emilia. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Genética e Instituto de Biotecnología; Argentina Fil: Kapros, Tamas. University of Missouri-Kansas City. School of Biological and Chemical Sciences; Estados Unidos Fil: Ayub, Nicolás Daniel. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Genética e Instituto de Biotecnología; Argentina Fil: Soto, Gabriela Cynthia. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Genética e Instituto de Biotecnología; Argentina |
description |
Alfalfa is the main forage worldwide due to its high biomass production, excellent nutritional qualities and adaptation to a wide range of environments (Singer et al. 2018). Besides, due to its ability to grow without nitrogen fertilizers derived from fossil fuels and conditions of long-duration perennial crop, alfalfa is a natural candidate for large production of renewable raw materials and vaccines at extremely low cost (Aguirreburualde et al. 2013; Saruul et al. 2002). However, the potential impact of alfalfa in agroindustrial processes is limited by strong transgene silencing. In the absence of genetic tools to bypass this constraint, the identification of alfalfa events with suitable transgene expression for commercial uses (e.g., high expression of transgenic traits) requires the production and analysis of a large number (e.g., 2000–3000) of transgenic events (Barros et al. 2019; Jozefkowicz et al. 2018; McCaslin et al. 2002). Naturally, this is an expensive empirical approach restricted to projects with high budget. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-08-18T14:50:48Z 2020-08-18T14:50:48Z 2020-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12123/7732 https://link.springer.com/article/10.1007/s00299-020-02521-3 0721-7714 1432-203X https://doi.org/10.1007/s00299-020-02521-3 |
url |
http://hdl.handle.net/20.500.12123/7732 https://link.springer.com/article/10.1007/s00299-020-02521-3 https://doi.org/10.1007/s00299-020-02521-3 |
identifier_str_mv |
0721-7714 1432-203X |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
eu_rights_str_mv |
restrictedAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
Plant Cell Reports 39 : 683–685 (2020) reponame:INTA Digital (INTA) instname:Instituto Nacional de Tecnología Agropecuaria |
reponame_str |
INTA Digital (INTA) |
collection |
INTA Digital (INTA) |
instname_str |
Instituto Nacional de Tecnología Agropecuaria |
repository.name.fl_str_mv |
INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria |
repository.mail.fl_str_mv |
tripaldi.nicolas@inta.gob.ar |
_version_ |
1844619146540613632 |
score |
12.559606 |