pBAR–H3.2, a native-optimized binary vector to bypass transgene silencing in alfalfa

Autores
Pascuan, Cecilia Gabriela; Bottero, Ana Emilia; Kapros, Tamas; Ayub, Nicolás Daniel; Soto, Gabriela Cynthia
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Alfalfa is the main forage worldwide due to its high biomass production, excellent nutritional qualities and adaptation to a wide range of environments (Singer et al. 2018). Besides, due to its ability to grow without nitrogen fertilizers derived from fossil fuels and conditions of long-duration perennial crop, alfalfa is a natural candidate for large production of renewable raw materials and vaccines at extremely low cost (Aguirreburualde et al. 2013; Saruul et al. 2002). However, the potential impact of alfalfa in agroindustrial processes is limited by strong transgene silencing. In the absence of genetic tools to bypass this constraint, the identification of alfalfa events with suitable transgene expression for commercial uses (e.g., high expression of transgenic traits) requires the production and analysis of a large number (e.g., 2000–3000) of transgenic events (Barros et al. 2019; Jozefkowicz et al. 2018; McCaslin et al. 2002). Naturally, this is an expensive empirical approach restricted to projects with high budget.
Instituto de Genética
Fil: Pascuan, Cecilia Gabriela. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Genética e Instituto de Biotecnología; Argentina
Fil: Bottero, Ana Emilia. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Genética e Instituto de Biotecnología; Argentina
Fil: Kapros, Tamas. University of Missouri-Kansas City. School of Biological and Chemical Sciences; Estados Unidos
Fil: Ayub, Nicolás Daniel. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Genética e Instituto de Biotecnología; Argentina
Fil: Soto, Gabriela Cynthia. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Genética e Instituto de Biotecnología; Argentina
Fuente
Plant Cell Reports 39 : 683–685 (2020)
Materia
Medicago sativa
Genética
Plantas Transgénicas
Vectores
Genetics
Transgenic Plants
Vectors
Alfalfa
Lucerne
Nivel de accesibilidad
acceso restringido
Condiciones de uso
Repositorio
INTA Digital (INTA)
Institución
Instituto Nacional de Tecnología Agropecuaria
OAI Identificador
oai:localhost:20.500.12123/7732

id INTADig_536817d3a40220b56703a1076f05ebe1
oai_identifier_str oai:localhost:20.500.12123/7732
network_acronym_str INTADig
repository_id_str l
network_name_str INTA Digital (INTA)
spelling pBAR–H3.2, a native-optimized binary vector to bypass transgene silencing in alfalfaPascuan, Cecilia GabrielaBottero, Ana EmiliaKapros, TamasAyub, Nicolás DanielSoto, Gabriela CynthiaMedicago sativaGenéticaPlantas TransgénicasVectoresGeneticsTransgenic PlantsVectorsAlfalfaLucerneAlfalfa is the main forage worldwide due to its high biomass production, excellent nutritional qualities and adaptation to a wide range of environments (Singer et al. 2018). Besides, due to its ability to grow without nitrogen fertilizers derived from fossil fuels and conditions of long-duration perennial crop, alfalfa is a natural candidate for large production of renewable raw materials and vaccines at extremely low cost (Aguirreburualde et al. 2013; Saruul et al. 2002). However, the potential impact of alfalfa in agroindustrial processes is limited by strong transgene silencing. In the absence of genetic tools to bypass this constraint, the identification of alfalfa events with suitable transgene expression for commercial uses (e.g., high expression of transgenic traits) requires the production and analysis of a large number (e.g., 2000–3000) of transgenic events (Barros et al. 2019; Jozefkowicz et al. 2018; McCaslin et al. 2002). Naturally, this is an expensive empirical approach restricted to projects with high budget.Instituto de GenéticaFil: Pascuan, Cecilia Gabriela. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Genética e Instituto de Biotecnología; ArgentinaFil: Bottero, Ana Emilia. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Genética e Instituto de Biotecnología; ArgentinaFil: Kapros, Tamas. University of Missouri-Kansas City. School of Biological and Chemical Sciences; Estados UnidosFil: Ayub, Nicolás Daniel. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Genética e Instituto de Biotecnología; ArgentinaFil: Soto, Gabriela Cynthia. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Genética e Instituto de Biotecnología; ArgentinaSpringer2020-08-18T14:50:48Z2020-08-18T14:50:48Z2020-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12123/7732https://link.springer.com/article/10.1007/s00299-020-02521-30721-77141432-203Xhttps://doi.org/10.1007/s00299-020-02521-3Plant Cell Reports 39 : 683–685 (2020)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repo/semantics/restrictedAccess2025-09-29T13:44:59Zoai:localhost:20.500.12123/7732instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-09-29 13:45:00.311INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse
dc.title.none.fl_str_mv pBAR–H3.2, a native-optimized binary vector to bypass transgene silencing in alfalfa
title pBAR–H3.2, a native-optimized binary vector to bypass transgene silencing in alfalfa
spellingShingle pBAR–H3.2, a native-optimized binary vector to bypass transgene silencing in alfalfa
Pascuan, Cecilia Gabriela
Medicago sativa
Genética
Plantas Transgénicas
Vectores
Genetics
Transgenic Plants
Vectors
Alfalfa
Lucerne
title_short pBAR–H3.2, a native-optimized binary vector to bypass transgene silencing in alfalfa
title_full pBAR–H3.2, a native-optimized binary vector to bypass transgene silencing in alfalfa
title_fullStr pBAR–H3.2, a native-optimized binary vector to bypass transgene silencing in alfalfa
title_full_unstemmed pBAR–H3.2, a native-optimized binary vector to bypass transgene silencing in alfalfa
title_sort pBAR–H3.2, a native-optimized binary vector to bypass transgene silencing in alfalfa
dc.creator.none.fl_str_mv Pascuan, Cecilia Gabriela
Bottero, Ana Emilia
Kapros, Tamas
Ayub, Nicolás Daniel
Soto, Gabriela Cynthia
author Pascuan, Cecilia Gabriela
author_facet Pascuan, Cecilia Gabriela
Bottero, Ana Emilia
Kapros, Tamas
Ayub, Nicolás Daniel
Soto, Gabriela Cynthia
author_role author
author2 Bottero, Ana Emilia
Kapros, Tamas
Ayub, Nicolás Daniel
Soto, Gabriela Cynthia
author2_role author
author
author
author
dc.subject.none.fl_str_mv Medicago sativa
Genética
Plantas Transgénicas
Vectores
Genetics
Transgenic Plants
Vectors
Alfalfa
Lucerne
topic Medicago sativa
Genética
Plantas Transgénicas
Vectores
Genetics
Transgenic Plants
Vectors
Alfalfa
Lucerne
dc.description.none.fl_txt_mv Alfalfa is the main forage worldwide due to its high biomass production, excellent nutritional qualities and adaptation to a wide range of environments (Singer et al. 2018). Besides, due to its ability to grow without nitrogen fertilizers derived from fossil fuels and conditions of long-duration perennial crop, alfalfa is a natural candidate for large production of renewable raw materials and vaccines at extremely low cost (Aguirreburualde et al. 2013; Saruul et al. 2002). However, the potential impact of alfalfa in agroindustrial processes is limited by strong transgene silencing. In the absence of genetic tools to bypass this constraint, the identification of alfalfa events with suitable transgene expression for commercial uses (e.g., high expression of transgenic traits) requires the production and analysis of a large number (e.g., 2000–3000) of transgenic events (Barros et al. 2019; Jozefkowicz et al. 2018; McCaslin et al. 2002). Naturally, this is an expensive empirical approach restricted to projects with high budget.
Instituto de Genética
Fil: Pascuan, Cecilia Gabriela. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Genética e Instituto de Biotecnología; Argentina
Fil: Bottero, Ana Emilia. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Genética e Instituto de Biotecnología; Argentina
Fil: Kapros, Tamas. University of Missouri-Kansas City. School of Biological and Chemical Sciences; Estados Unidos
Fil: Ayub, Nicolás Daniel. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Genética e Instituto de Biotecnología; Argentina
Fil: Soto, Gabriela Cynthia. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Genética e Instituto de Biotecnología; Argentina
description Alfalfa is the main forage worldwide due to its high biomass production, excellent nutritional qualities and adaptation to a wide range of environments (Singer et al. 2018). Besides, due to its ability to grow without nitrogen fertilizers derived from fossil fuels and conditions of long-duration perennial crop, alfalfa is a natural candidate for large production of renewable raw materials and vaccines at extremely low cost (Aguirreburualde et al. 2013; Saruul et al. 2002). However, the potential impact of alfalfa in agroindustrial processes is limited by strong transgene silencing. In the absence of genetic tools to bypass this constraint, the identification of alfalfa events with suitable transgene expression for commercial uses (e.g., high expression of transgenic traits) requires the production and analysis of a large number (e.g., 2000–3000) of transgenic events (Barros et al. 2019; Jozefkowicz et al. 2018; McCaslin et al. 2002). Naturally, this is an expensive empirical approach restricted to projects with high budget.
publishDate 2020
dc.date.none.fl_str_mv 2020-08-18T14:50:48Z
2020-08-18T14:50:48Z
2020-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12123/7732
https://link.springer.com/article/10.1007/s00299-020-02521-3
0721-7714
1432-203X
https://doi.org/10.1007/s00299-020-02521-3
url http://hdl.handle.net/20.500.12123/7732
https://link.springer.com/article/10.1007/s00299-020-02521-3
https://doi.org/10.1007/s00299-020-02521-3
identifier_str_mv 0721-7714
1432-203X
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
eu_rights_str_mv restrictedAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv Plant Cell Reports 39 : 683–685 (2020)
reponame:INTA Digital (INTA)
instname:Instituto Nacional de Tecnología Agropecuaria
reponame_str INTA Digital (INTA)
collection INTA Digital (INTA)
instname_str Instituto Nacional de Tecnología Agropecuaria
repository.name.fl_str_mv INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria
repository.mail.fl_str_mv tripaldi.nicolas@inta.gob.ar
_version_ 1844619146540613632
score 12.559606