Crop-wild sunflower hybridization can mediate weediness throughout growth-stress tolerance trade-offs
- Autores
- Presotto, Alejandro Daniel; Hernández, Fernando; Díaz, Marina; Fernández Moroni, Ivana; Pandolfo, Claudio Ezequiel; Basualdo, Jessica; Cuppari, Selva Yanet; Cantamutto, Miguel Angel; Poverene, María Mónica
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Agricultural weeds are plants well-adapted to agricultural environments interfering directly and indirectly with crop production and causing important economic losses worldwide. Crop-wild hybridization is one of the main forces that have ruled weed evolution along with adaptation to agricultural (or benign) environments. Considering the competing demands for resources in any plant, adaptation to agricultural environments might result in an increase in growth but with lower tolerance to stress. In Argentina, most of the non-native H. annuus populations grow on roadsides, ditches, fences, hedgerows (ruderals), but there are also a few cases of H. annuus growing in agricultural field as weeds (agrestals). We asume that weediness of these agrestal biotypes came after crop hybridization as result of growth-stress tolerance trade-offs. Ruderal, agrestal (with evidence of crop introgression), and crop biotypes were contrasted under studies of drought and defoliation stresses, as well as for plant growth under non-stressful conditions and sequences of stress-related genes. The agrestal biotype was less tolerant to defoliation and drought than the ruderal biotype. Drought tolerance variation was largely explained by plant height rate (growth) and defoliation tolerance variation was mainly explained by biomass accumulation (resource allocation). Agrestal biotype sequences of two genes encoding transcription factors involved in stress response, DREB2 and NAC, showed evidence of positive selection in the crop direction. Therefore, selection in the agricultural environment combined with crop hybridization driver the evolution of a well-adapted genetic variant of H. annuus with fast growth but reduced stress tolerance.
EEA Hilario Ascasubi
Fil: Presotto, Alejandro Daniel. Universidad Nacional del Sur. Departamento de Agronomía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - CONICET - Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida; Argentina
Fil: Hernández, Fernando. Universidad Nacional del Sur. Departamento de Agronomía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - CONICET - Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida; Argentina
Fil: Díaz, Marina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - CONICET - Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida; Argentina. Universidad Nacional del Sur. Departamento de Biología, Bioquímica y Farmacia; Argentina
Fil: Fernández Moroni, Ivana. Universidad Nacional del Sur. Departamento de Agronomía; Argentina
Fil: Pandolfo, Claudio Ezequiel. Universidad Nacional del Sur. Departamento de Agronomía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - CONICET - Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida; Argentina
Fil: Basualdo, Jessica. Universidad Nacional del Sur. Departamento de Agronomía; Argentina
Fil: Cuppari, Selva Yanet. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida. Universidad Nacional del Sur. Centro de Recursos Naturales Renovables de la Zona Semiárida; Argentina
Fil: Cantamutto, Miguel Angel. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Hilario Ascasubi; Argentina
Fil: Poverene, María Mónica. Universidad Nacional del Sur. Departamento de Agronomía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - CONICET - Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida; Argentina - Fuente
- Agriculture, ecosystems & environment 249 : 12-21. (November 2017)
- Materia
-
Helianthus Annuus
Hibridación
Malezas
Plantas Silvestres
Estres
Genotipos
Hybridization
Weeds
Wild Plants
Stress
Genotypes
Girasol - Nivel de accesibilidad
- acceso restringido
- Condiciones de uso
- Repositorio
.jpg)
- Institución
- Instituto Nacional de Tecnología Agropecuaria
- OAI Identificador
- oai:localhost:20.500.12123/2314
Ver los metadatos del registro completo
| id |
INTADig_4f53dd9834eaad60806ff56516daddfa |
|---|---|
| oai_identifier_str |
oai:localhost:20.500.12123/2314 |
| network_acronym_str |
INTADig |
| repository_id_str |
l |
| network_name_str |
INTA Digital (INTA) |
| spelling |
Crop-wild sunflower hybridization can mediate weediness throughout growth-stress tolerance trade-offsPresotto, Alejandro DanielHernández, FernandoDíaz, MarinaFernández Moroni, IvanaPandolfo, Claudio EzequielBasualdo, JessicaCuppari, Selva YanetCantamutto, Miguel AngelPoverene, María MónicaHelianthus AnnuusHibridaciónMalezasPlantas SilvestresEstresGenotiposHybridizationWeedsWild PlantsStressGenotypesGirasolAgricultural weeds are plants well-adapted to agricultural environments interfering directly and indirectly with crop production and causing important economic losses worldwide. Crop-wild hybridization is one of the main forces that have ruled weed evolution along with adaptation to agricultural (or benign) environments. Considering the competing demands for resources in any plant, adaptation to agricultural environments might result in an increase in growth but with lower tolerance to stress. In Argentina, most of the non-native H. annuus populations grow on roadsides, ditches, fences, hedgerows (ruderals), but there are also a few cases of H. annuus growing in agricultural field as weeds (agrestals). We asume that weediness of these agrestal biotypes came after crop hybridization as result of growth-stress tolerance trade-offs. Ruderal, agrestal (with evidence of crop introgression), and crop biotypes were contrasted under studies of drought and defoliation stresses, as well as for plant growth under non-stressful conditions and sequences of stress-related genes. The agrestal biotype was less tolerant to defoliation and drought than the ruderal biotype. Drought tolerance variation was largely explained by plant height rate (growth) and defoliation tolerance variation was mainly explained by biomass accumulation (resource allocation). Agrestal biotype sequences of two genes encoding transcription factors involved in stress response, DREB2 and NAC, showed evidence of positive selection in the crop direction. Therefore, selection in the agricultural environment combined with crop hybridization driver the evolution of a well-adapted genetic variant of H. annuus with fast growth but reduced stress tolerance.EEA Hilario AscasubiFil: Presotto, Alejandro Daniel. Universidad Nacional del Sur. Departamento de Agronomía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - CONICET - Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida; ArgentinaFil: Hernández, Fernando. Universidad Nacional del Sur. Departamento de Agronomía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - CONICET - Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida; ArgentinaFil: Díaz, Marina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - CONICET - Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida; Argentina. Universidad Nacional del Sur. Departamento de Biología, Bioquímica y Farmacia; ArgentinaFil: Fernández Moroni, Ivana. Universidad Nacional del Sur. Departamento de Agronomía; ArgentinaFil: Pandolfo, Claudio Ezequiel. Universidad Nacional del Sur. Departamento de Agronomía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - CONICET - Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida; ArgentinaFil: Basualdo, Jessica. Universidad Nacional del Sur. Departamento de Agronomía; ArgentinaFil: Cuppari, Selva Yanet. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida. Universidad Nacional del Sur. Centro de Recursos Naturales Renovables de la Zona Semiárida; ArgentinaFil: Cantamutto, Miguel Angel. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Hilario Ascasubi; ArgentinaFil: Poverene, María Mónica. Universidad Nacional del Sur. Departamento de Agronomía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - CONICET - Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida; Argentina2018-05-03T13:41:55Z2018-05-03T13:41:55Z2017-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12123/2314https://www.sciencedirect.com/science/article/pii/S01678809173035350167-8809https://doi.org/10.1016/j.agee.2017.08.003Agriculture, ecosystems & environment 249 : 12-21. (November 2017)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repo/semantics/restrictedAccess2025-12-18T09:00:55Zoai:localhost:20.500.12123/2314instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-12-18 09:00:55.602INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse |
| dc.title.none.fl_str_mv |
Crop-wild sunflower hybridization can mediate weediness throughout growth-stress tolerance trade-offs |
| title |
Crop-wild sunflower hybridization can mediate weediness throughout growth-stress tolerance trade-offs |
| spellingShingle |
Crop-wild sunflower hybridization can mediate weediness throughout growth-stress tolerance trade-offs Presotto, Alejandro Daniel Helianthus Annuus Hibridación Malezas Plantas Silvestres Estres Genotipos Hybridization Weeds Wild Plants Stress Genotypes Girasol |
| title_short |
Crop-wild sunflower hybridization can mediate weediness throughout growth-stress tolerance trade-offs |
| title_full |
Crop-wild sunflower hybridization can mediate weediness throughout growth-stress tolerance trade-offs |
| title_fullStr |
Crop-wild sunflower hybridization can mediate weediness throughout growth-stress tolerance trade-offs |
| title_full_unstemmed |
Crop-wild sunflower hybridization can mediate weediness throughout growth-stress tolerance trade-offs |
| title_sort |
Crop-wild sunflower hybridization can mediate weediness throughout growth-stress tolerance trade-offs |
| dc.creator.none.fl_str_mv |
Presotto, Alejandro Daniel Hernández, Fernando Díaz, Marina Fernández Moroni, Ivana Pandolfo, Claudio Ezequiel Basualdo, Jessica Cuppari, Selva Yanet Cantamutto, Miguel Angel Poverene, María Mónica |
| author |
Presotto, Alejandro Daniel |
| author_facet |
Presotto, Alejandro Daniel Hernández, Fernando Díaz, Marina Fernández Moroni, Ivana Pandolfo, Claudio Ezequiel Basualdo, Jessica Cuppari, Selva Yanet Cantamutto, Miguel Angel Poverene, María Mónica |
| author_role |
author |
| author2 |
Hernández, Fernando Díaz, Marina Fernández Moroni, Ivana Pandolfo, Claudio Ezequiel Basualdo, Jessica Cuppari, Selva Yanet Cantamutto, Miguel Angel Poverene, María Mónica |
| author2_role |
author author author author author author author author |
| dc.subject.none.fl_str_mv |
Helianthus Annuus Hibridación Malezas Plantas Silvestres Estres Genotipos Hybridization Weeds Wild Plants Stress Genotypes Girasol |
| topic |
Helianthus Annuus Hibridación Malezas Plantas Silvestres Estres Genotipos Hybridization Weeds Wild Plants Stress Genotypes Girasol |
| dc.description.none.fl_txt_mv |
Agricultural weeds are plants well-adapted to agricultural environments interfering directly and indirectly with crop production and causing important economic losses worldwide. Crop-wild hybridization is one of the main forces that have ruled weed evolution along with adaptation to agricultural (or benign) environments. Considering the competing demands for resources in any plant, adaptation to agricultural environments might result in an increase in growth but with lower tolerance to stress. In Argentina, most of the non-native H. annuus populations grow on roadsides, ditches, fences, hedgerows (ruderals), but there are also a few cases of H. annuus growing in agricultural field as weeds (agrestals). We asume that weediness of these agrestal biotypes came after crop hybridization as result of growth-stress tolerance trade-offs. Ruderal, agrestal (with evidence of crop introgression), and crop biotypes were contrasted under studies of drought and defoliation stresses, as well as for plant growth under non-stressful conditions and sequences of stress-related genes. The agrestal biotype was less tolerant to defoliation and drought than the ruderal biotype. Drought tolerance variation was largely explained by plant height rate (growth) and defoliation tolerance variation was mainly explained by biomass accumulation (resource allocation). Agrestal biotype sequences of two genes encoding transcription factors involved in stress response, DREB2 and NAC, showed evidence of positive selection in the crop direction. Therefore, selection in the agricultural environment combined with crop hybridization driver the evolution of a well-adapted genetic variant of H. annuus with fast growth but reduced stress tolerance. EEA Hilario Ascasubi Fil: Presotto, Alejandro Daniel. Universidad Nacional del Sur. Departamento de Agronomía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - CONICET - Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida; Argentina Fil: Hernández, Fernando. Universidad Nacional del Sur. Departamento de Agronomía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - CONICET - Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida; Argentina Fil: Díaz, Marina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - CONICET - Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida; Argentina. Universidad Nacional del Sur. Departamento de Biología, Bioquímica y Farmacia; Argentina Fil: Fernández Moroni, Ivana. Universidad Nacional del Sur. Departamento de Agronomía; Argentina Fil: Pandolfo, Claudio Ezequiel. Universidad Nacional del Sur. Departamento de Agronomía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - CONICET - Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida; Argentina Fil: Basualdo, Jessica. Universidad Nacional del Sur. Departamento de Agronomía; Argentina Fil: Cuppari, Selva Yanet. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida. Universidad Nacional del Sur. Centro de Recursos Naturales Renovables de la Zona Semiárida; Argentina Fil: Cantamutto, Miguel Angel. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Hilario Ascasubi; Argentina Fil: Poverene, María Mónica. Universidad Nacional del Sur. Departamento de Agronomía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - CONICET - Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida; Argentina |
| description |
Agricultural weeds are plants well-adapted to agricultural environments interfering directly and indirectly with crop production and causing important economic losses worldwide. Crop-wild hybridization is one of the main forces that have ruled weed evolution along with adaptation to agricultural (or benign) environments. Considering the competing demands for resources in any plant, adaptation to agricultural environments might result in an increase in growth but with lower tolerance to stress. In Argentina, most of the non-native H. annuus populations grow on roadsides, ditches, fences, hedgerows (ruderals), but there are also a few cases of H. annuus growing in agricultural field as weeds (agrestals). We asume that weediness of these agrestal biotypes came after crop hybridization as result of growth-stress tolerance trade-offs. Ruderal, agrestal (with evidence of crop introgression), and crop biotypes were contrasted under studies of drought and defoliation stresses, as well as for plant growth under non-stressful conditions and sequences of stress-related genes. The agrestal biotype was less tolerant to defoliation and drought than the ruderal biotype. Drought tolerance variation was largely explained by plant height rate (growth) and defoliation tolerance variation was mainly explained by biomass accumulation (resource allocation). Agrestal biotype sequences of two genes encoding transcription factors involved in stress response, DREB2 and NAC, showed evidence of positive selection in the crop direction. Therefore, selection in the agricultural environment combined with crop hybridization driver the evolution of a well-adapted genetic variant of H. annuus with fast growth but reduced stress tolerance. |
| publishDate |
2017 |
| dc.date.none.fl_str_mv |
2017-11 2018-05-03T13:41:55Z 2018-05-03T13:41:55Z |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12123/2314 https://www.sciencedirect.com/science/article/pii/S0167880917303535 0167-8809 https://doi.org/10.1016/j.agee.2017.08.003 |
| url |
http://hdl.handle.net/20.500.12123/2314 https://www.sciencedirect.com/science/article/pii/S0167880917303535 https://doi.org/10.1016/j.agee.2017.08.003 |
| identifier_str_mv |
0167-8809 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
| eu_rights_str_mv |
restrictedAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.source.none.fl_str_mv |
Agriculture, ecosystems & environment 249 : 12-21. (November 2017) reponame:INTA Digital (INTA) instname:Instituto Nacional de Tecnología Agropecuaria |
| reponame_str |
INTA Digital (INTA) |
| collection |
INTA Digital (INTA) |
| instname_str |
Instituto Nacional de Tecnología Agropecuaria |
| repository.name.fl_str_mv |
INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria |
| repository.mail.fl_str_mv |
tripaldi.nicolas@inta.gob.ar |
| _version_ |
1851855587938140160 |
| score |
12.952241 |