Sugarcane radiation use efficiency: varietal differences, temperature dependence, and implications for modeling biomass across environments

Autores
Christina, Mathias; Clark, David; Marin, Fabio Ricardo; Ribeiro, Rafael Vasconcelos; Saez, Julio Victor; Chibarabada, Tendai Polite; Vianna, Murilo dos Santos; Jones, Matthew R.; Cuadra, Santiago Vianna; Cabral, Osvaldo Machado Rodrigues; Acreche, Martin Moises; Dias, Henrique Boriolo
Año de publicación
2025
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Sugarcane is a major tropical C4 crop of global economic significance, primarily used for sugar, ethanol, and bioenergy production. As climate change accelerates, with projected increases in global temperatures, understanding the temperature sensitivity of sugarcane's radiation use efficiency (RUE) is crucial for projecting yield under changing environmental conditions. In this context, this study aimed to characterize sugarcane RUE response to temperature across various environments and varieties from key producing regions worldwide. Using experimental data from six countries (Brazil, South Africa, United States of America, Zimbabwe, Argentina, and La Réunion) and 40 distinct varieties, our results indicated that maximum RUE (RUEMAX) is consistent across varieties, while apparent RUE (RUEA) showed significant variation. Based on this diverse dataset, we parameterized different RUEMAX temperature response formalisms used in crop models (APSIM-Sugar, DSSAT-Canegro, MOSICAS, and emergent formalisms). We compared their ability to simulate RUEA in various regions accurately. Our analysis revealed significant differences in formalism performance, emphasizing the need for accurate parameterization. Additionally, we demonstrated that predictions of biomass production under climate change scenarios are highly sensitive to the formalism parameterization used to represent the RUE-temperature relationship. These findings highlight the critical importance of refining crop models considering temperature response and cardinal temperatures (optimal range: 30–33°C) to enhance projections of sugarcane yield under future climate conditions. We discussed physiological processes that may explain differences in RUEA among varieties. Incorporating these refined mechanisms into models will support more accurate climate impact assessments and aid breeding programs focused on developing high-yield sugarcane varieties.
EEA Famaillá
Fil: Christina, Mathias. CIRAD, UPR AIDA; Francia
Fil: Christina, Mathias. AIDA, Univ Montpellier, CIRAD; Francia
Fil: Clark, David. SASRI; Sudáfrica
Fil: Clark, David. University of KwaZulu-Natal. School of Agricultural, Earth and Environmental Sciences; Sudáfrica
Fil: Marin, Fabio Ricardo. University of São Paulo “Luiz de Queiroz”. College of Agriculture; Brasil
Fil: Ribeiro, Rafael Vasconcelos. State University of Campinas. Department of Plant Biology. Laboratory of Crop Physiology; Brasil
Fil: Saez, Julio Victor. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Famaillá; Argentina
Fil: Chibarabada, Tendai Polite. Zimbabwe Sugar Association Experiment Station. Agronomy Department; Zimbabue
Fil: Vianna, Murilo dos Santos. Forschungszentrum Jülich GmbH. Institute of Bio- and Geosciences (IBG-3); Alemania
Fil: Jones, Matthew R. Wageningen University and Research. Centre for Crop Systems Analysis; Países Bajos
Fil: Cuadra, Santiago Vianna. Empresa Brasileira de Pesquisa Agropecuária. Agricultura Digital; Brasil
Fil: Cabral, Osvaldo Machado Rodrigues. Empresa Brasileira de Pesquisa Agropecuária. Meio Ambiente; Brasil
Fil: Acreche, Martin Moises. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Salta; Argentina.
Fil: Dias, Henrique Boriolo. University of Florida. Department of Agricultural and Biological Engineering; Estados Unidos
Fuente
Agricultural and Forest Meteorology 375 : 110854. (December 2025)
Materia
Caña de Azúcar
Eficiencia en el Uso de los Recursos
Radiación
Cambio Climático
Variedades
Temperatura
Modelización de los Cultivos
Sugar Cane
Resource Use Efficiency
Radiation
Climate Change
Varieties
Temperature
Crop Modelling
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
INTA Digital (INTA)
Institución
Instituto Nacional de Tecnología Agropecuaria
OAI Identificador
oai:localhost:20.500.12123/24200

id INTADig_4cdcceee3eaab9a42887f0122640ce39
oai_identifier_str oai:localhost:20.500.12123/24200
network_acronym_str INTADig
repository_id_str l
network_name_str INTA Digital (INTA)
spelling Sugarcane radiation use efficiency: varietal differences, temperature dependence, and implications for modeling biomass across environmentsChristina, MathiasClark, DavidMarin, Fabio RicardoRibeiro, Rafael VasconcelosSaez, Julio VictorChibarabada, Tendai PoliteVianna, Murilo dos SantosJones, Matthew R.Cuadra, Santiago ViannaCabral, Osvaldo Machado RodriguesAcreche, Martin MoisesDias, Henrique BorioloCaña de AzúcarEficiencia en el Uso de los RecursosRadiaciónCambio ClimáticoVariedadesTemperaturaModelización de los CultivosSugar CaneResource Use EfficiencyRadiationClimate ChangeVarietiesTemperatureCrop ModellingSugarcane is a major tropical C4 crop of global economic significance, primarily used for sugar, ethanol, and bioenergy production. As climate change accelerates, with projected increases in global temperatures, understanding the temperature sensitivity of sugarcane's radiation use efficiency (RUE) is crucial for projecting yield under changing environmental conditions. In this context, this study aimed to characterize sugarcane RUE response to temperature across various environments and varieties from key producing regions worldwide. Using experimental data from six countries (Brazil, South Africa, United States of America, Zimbabwe, Argentina, and La Réunion) and 40 distinct varieties, our results indicated that maximum RUE (RUEMAX) is consistent across varieties, while apparent RUE (RUEA) showed significant variation. Based on this diverse dataset, we parameterized different RUEMAX temperature response formalisms used in crop models (APSIM-Sugar, DSSAT-Canegro, MOSICAS, and emergent formalisms). We compared their ability to simulate RUEA in various regions accurately. Our analysis revealed significant differences in formalism performance, emphasizing the need for accurate parameterization. Additionally, we demonstrated that predictions of biomass production under climate change scenarios are highly sensitive to the formalism parameterization used to represent the RUE-temperature relationship. These findings highlight the critical importance of refining crop models considering temperature response and cardinal temperatures (optimal range: 30–33°C) to enhance projections of sugarcane yield under future climate conditions. We discussed physiological processes that may explain differences in RUEA among varieties. Incorporating these refined mechanisms into models will support more accurate climate impact assessments and aid breeding programs focused on developing high-yield sugarcane varieties.EEA FamailláFil: Christina, Mathias. CIRAD, UPR AIDA; FranciaFil: Christina, Mathias. AIDA, Univ Montpellier, CIRAD; FranciaFil: Clark, David. SASRI; SudáfricaFil: Clark, David. University of KwaZulu-Natal. School of Agricultural, Earth and Environmental Sciences; SudáfricaFil: Marin, Fabio Ricardo. University of São Paulo “Luiz de Queiroz”. College of Agriculture; BrasilFil: Ribeiro, Rafael Vasconcelos. State University of Campinas. Department of Plant Biology. Laboratory of Crop Physiology; BrasilFil: Saez, Julio Victor. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Famaillá; ArgentinaFil: Chibarabada, Tendai Polite. Zimbabwe Sugar Association Experiment Station. Agronomy Department; ZimbabueFil: Vianna, Murilo dos Santos. Forschungszentrum Jülich GmbH. Institute of Bio- and Geosciences (IBG-3); AlemaniaFil: Jones, Matthew R. Wageningen University and Research. Centre for Crop Systems Analysis; Países BajosFil: Cuadra, Santiago Vianna. Empresa Brasileira de Pesquisa Agropecuária. Agricultura Digital; BrasilFil: Cabral, Osvaldo Machado Rodrigues. Empresa Brasileira de Pesquisa Agropecuária. Meio Ambiente; BrasilFil: Acreche, Martin Moises. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Salta; Argentina.Fil: Dias, Henrique Boriolo. University of Florida. Department of Agricultural and Biological Engineering; Estados UnidosElsevier2025-10-17T12:52:57Z2025-10-17T12:52:57Z2025-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12123/24200https://www.sciencedirect.com/science/article/pii/S01681923250047330168-19231873-2240https://doi.org/10.1016/j.agrformet.2025.110854Agricultural and Forest Meteorology 375 : 110854. (December 2025)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)2025-12-18T09:04:00Zoai:localhost:20.500.12123/24200instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-12-18 09:04:01.308INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse
dc.title.none.fl_str_mv Sugarcane radiation use efficiency: varietal differences, temperature dependence, and implications for modeling biomass across environments
title Sugarcane radiation use efficiency: varietal differences, temperature dependence, and implications for modeling biomass across environments
spellingShingle Sugarcane radiation use efficiency: varietal differences, temperature dependence, and implications for modeling biomass across environments
Christina, Mathias
Caña de Azúcar
Eficiencia en el Uso de los Recursos
Radiación
Cambio Climático
Variedades
Temperatura
Modelización de los Cultivos
Sugar Cane
Resource Use Efficiency
Radiation
Climate Change
Varieties
Temperature
Crop Modelling
title_short Sugarcane radiation use efficiency: varietal differences, temperature dependence, and implications for modeling biomass across environments
title_full Sugarcane radiation use efficiency: varietal differences, temperature dependence, and implications for modeling biomass across environments
title_fullStr Sugarcane radiation use efficiency: varietal differences, temperature dependence, and implications for modeling biomass across environments
title_full_unstemmed Sugarcane radiation use efficiency: varietal differences, temperature dependence, and implications for modeling biomass across environments
title_sort Sugarcane radiation use efficiency: varietal differences, temperature dependence, and implications for modeling biomass across environments
dc.creator.none.fl_str_mv Christina, Mathias
Clark, David
Marin, Fabio Ricardo
Ribeiro, Rafael Vasconcelos
Saez, Julio Victor
Chibarabada, Tendai Polite
Vianna, Murilo dos Santos
Jones, Matthew R.
Cuadra, Santiago Vianna
Cabral, Osvaldo Machado Rodrigues
Acreche, Martin Moises
Dias, Henrique Boriolo
author Christina, Mathias
author_facet Christina, Mathias
Clark, David
Marin, Fabio Ricardo
Ribeiro, Rafael Vasconcelos
Saez, Julio Victor
Chibarabada, Tendai Polite
Vianna, Murilo dos Santos
Jones, Matthew R.
Cuadra, Santiago Vianna
Cabral, Osvaldo Machado Rodrigues
Acreche, Martin Moises
Dias, Henrique Boriolo
author_role author
author2 Clark, David
Marin, Fabio Ricardo
Ribeiro, Rafael Vasconcelos
Saez, Julio Victor
Chibarabada, Tendai Polite
Vianna, Murilo dos Santos
Jones, Matthew R.
Cuadra, Santiago Vianna
Cabral, Osvaldo Machado Rodrigues
Acreche, Martin Moises
Dias, Henrique Boriolo
author2_role author
author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Caña de Azúcar
Eficiencia en el Uso de los Recursos
Radiación
Cambio Climático
Variedades
Temperatura
Modelización de los Cultivos
Sugar Cane
Resource Use Efficiency
Radiation
Climate Change
Varieties
Temperature
Crop Modelling
topic Caña de Azúcar
Eficiencia en el Uso de los Recursos
Radiación
Cambio Climático
Variedades
Temperatura
Modelización de los Cultivos
Sugar Cane
Resource Use Efficiency
Radiation
Climate Change
Varieties
Temperature
Crop Modelling
dc.description.none.fl_txt_mv Sugarcane is a major tropical C4 crop of global economic significance, primarily used for sugar, ethanol, and bioenergy production. As climate change accelerates, with projected increases in global temperatures, understanding the temperature sensitivity of sugarcane's radiation use efficiency (RUE) is crucial for projecting yield under changing environmental conditions. In this context, this study aimed to characterize sugarcane RUE response to temperature across various environments and varieties from key producing regions worldwide. Using experimental data from six countries (Brazil, South Africa, United States of America, Zimbabwe, Argentina, and La Réunion) and 40 distinct varieties, our results indicated that maximum RUE (RUEMAX) is consistent across varieties, while apparent RUE (RUEA) showed significant variation. Based on this diverse dataset, we parameterized different RUEMAX temperature response formalisms used in crop models (APSIM-Sugar, DSSAT-Canegro, MOSICAS, and emergent formalisms). We compared their ability to simulate RUEA in various regions accurately. Our analysis revealed significant differences in formalism performance, emphasizing the need for accurate parameterization. Additionally, we demonstrated that predictions of biomass production under climate change scenarios are highly sensitive to the formalism parameterization used to represent the RUE-temperature relationship. These findings highlight the critical importance of refining crop models considering temperature response and cardinal temperatures (optimal range: 30–33°C) to enhance projections of sugarcane yield under future climate conditions. We discussed physiological processes that may explain differences in RUEA among varieties. Incorporating these refined mechanisms into models will support more accurate climate impact assessments and aid breeding programs focused on developing high-yield sugarcane varieties.
EEA Famaillá
Fil: Christina, Mathias. CIRAD, UPR AIDA; Francia
Fil: Christina, Mathias. AIDA, Univ Montpellier, CIRAD; Francia
Fil: Clark, David. SASRI; Sudáfrica
Fil: Clark, David. University of KwaZulu-Natal. School of Agricultural, Earth and Environmental Sciences; Sudáfrica
Fil: Marin, Fabio Ricardo. University of São Paulo “Luiz de Queiroz”. College of Agriculture; Brasil
Fil: Ribeiro, Rafael Vasconcelos. State University of Campinas. Department of Plant Biology. Laboratory of Crop Physiology; Brasil
Fil: Saez, Julio Victor. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Famaillá; Argentina
Fil: Chibarabada, Tendai Polite. Zimbabwe Sugar Association Experiment Station. Agronomy Department; Zimbabue
Fil: Vianna, Murilo dos Santos. Forschungszentrum Jülich GmbH. Institute of Bio- and Geosciences (IBG-3); Alemania
Fil: Jones, Matthew R. Wageningen University and Research. Centre for Crop Systems Analysis; Países Bajos
Fil: Cuadra, Santiago Vianna. Empresa Brasileira de Pesquisa Agropecuária. Agricultura Digital; Brasil
Fil: Cabral, Osvaldo Machado Rodrigues. Empresa Brasileira de Pesquisa Agropecuária. Meio Ambiente; Brasil
Fil: Acreche, Martin Moises. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Salta; Argentina.
Fil: Dias, Henrique Boriolo. University of Florida. Department of Agricultural and Biological Engineering; Estados Unidos
description Sugarcane is a major tropical C4 crop of global economic significance, primarily used for sugar, ethanol, and bioenergy production. As climate change accelerates, with projected increases in global temperatures, understanding the temperature sensitivity of sugarcane's radiation use efficiency (RUE) is crucial for projecting yield under changing environmental conditions. In this context, this study aimed to characterize sugarcane RUE response to temperature across various environments and varieties from key producing regions worldwide. Using experimental data from six countries (Brazil, South Africa, United States of America, Zimbabwe, Argentina, and La Réunion) and 40 distinct varieties, our results indicated that maximum RUE (RUEMAX) is consistent across varieties, while apparent RUE (RUEA) showed significant variation. Based on this diverse dataset, we parameterized different RUEMAX temperature response formalisms used in crop models (APSIM-Sugar, DSSAT-Canegro, MOSICAS, and emergent formalisms). We compared their ability to simulate RUEA in various regions accurately. Our analysis revealed significant differences in formalism performance, emphasizing the need for accurate parameterization. Additionally, we demonstrated that predictions of biomass production under climate change scenarios are highly sensitive to the formalism parameterization used to represent the RUE-temperature relationship. These findings highlight the critical importance of refining crop models considering temperature response and cardinal temperatures (optimal range: 30–33°C) to enhance projections of sugarcane yield under future climate conditions. We discussed physiological processes that may explain differences in RUEA among varieties. Incorporating these refined mechanisms into models will support more accurate climate impact assessments and aid breeding programs focused on developing high-yield sugarcane varieties.
publishDate 2025
dc.date.none.fl_str_mv 2025-10-17T12:52:57Z
2025-10-17T12:52:57Z
2025-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12123/24200
https://www.sciencedirect.com/science/article/pii/S0168192325004733
0168-1923
1873-2240
https://doi.org/10.1016/j.agrformet.2025.110854
url http://hdl.handle.net/20.500.12123/24200
https://www.sciencedirect.com/science/article/pii/S0168192325004733
https://doi.org/10.1016/j.agrformet.2025.110854
identifier_str_mv 0168-1923
1873-2240
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv Agricultural and Forest Meteorology 375 : 110854. (December 2025)
reponame:INTA Digital (INTA)
instname:Instituto Nacional de Tecnología Agropecuaria
reponame_str INTA Digital (INTA)
collection INTA Digital (INTA)
instname_str Instituto Nacional de Tecnología Agropecuaria
repository.name.fl_str_mv INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria
repository.mail.fl_str_mv tripaldi.nicolas@inta.gob.ar
_version_ 1851855715796254720
score 12.952241