Trend-cycles of vegetation dynamics as a tool for land degradation assessment and monitoring

Autores
Easdale, Marcos Horacio; Farina, Clara Maria; Hara, Sofía; Perez Leon, Natalia Jesica; Umaña, Fernando; Tittonell, Pablo Adrian; Bruzzone, Octavio Augusto
Año de publicación
2019
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The use of time series of Normalized Difference Vegetation Index (NDVI), obtained from satellite sensors has become frequent in studies for land degradation assessment and monitoring. Linear trends of NDVI are usually considered as indicators of vegetation dynamics and widely used as proxies for land degradation. Yet, long-term trends of NDVI often exhibit unidirectional (monotonic) but also cyclic (non-monotonic) dynamics, including mid-term oscillations, both of which are poorly captured by linear trends. Trend-cycle is a time series analysis that represents a smoothed version of a seasonally adjusted time series, which provides information on long-term movements while including changes in direction underlying the series. We assessed NDVI trend-cycles in Patagonia (Argentina) as proxies for land dynamics, integrating trend and medium-term cycles (> 4 years). We used MODIS images between years 2000 and mid-2018; trend-cycles were analysed using the Basis Pursuit method. We observed that trend-cycles explained a significant portion of total temporal variability (reaching almost 20%), from which most patterns were explained by non-monotonic behaviour. We identified five major patterns in vegetation dynamics: decreasing (0.1% of area), increasing (0.6%), recovery (48.8%), relapsing (36.8%) and no trend-cycle (13.8%). Contrary to what is generally seen in the literature, monotonic patterns and particularly decreasing trend-cycles were marginally recorded in the last 18 years of NDVI records in Patagonia.Instead, the greater proportion of the area was classified as initial or advanced recovery and initial relapsing patterns, which refer to phases of a cyclic behaviour. We call for the need to revisit the conceptualization of land degradation assessment by means of remote sensing, and to critically review the ability of linear trends to reflect vegetation dynamics. Finally, we discuss the potential use of trend-cycle as a tool to monitor land dynamics and progress towards land degradation neutrality.
Fil: Easdale, Marcos Horacio. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Consejo Nacional de Investigaciones Cientificas y Técnicas. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentina
Fil: Fariña, Clara María. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Consejo Nacional de Investigaciones Cientificas y Técnicas. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentina
Fil: Hara, Sofía. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Consejo Nacional de Investigaciones Cientificas y Técnicas. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentina
Fil: Pérez León, Natalia. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Consejo Nacional de Investigaciones Cientificas y Técnicas. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentina
Fil: Umaña, Fernando. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche; Argentina
Fil: Tittonell, Pablo Adrian. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Consejo Nacional de Investigaciones Cientificas y Técnicas. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentina
Fil: Bruzzone, Octavio Augusto.Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Consejo Nacional de Investigaciones Cientificas y Técnicas. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentina
Fuente
Ecological Indicators 107 : 105545 (December 2019)
Materia
Desertificación
Degradación
Desertification
Degradation
Monitoring
Vigilancia
NDVI
Sistemas de Monitoreo
MARAS
Región Patagónica
Nivel de accesibilidad
acceso restringido
Condiciones de uso
Repositorio
INTA Digital (INTA)
Institución
Instituto Nacional de Tecnología Agropecuaria
OAI Identificador
oai:localhost:20.500.12123/6024

id INTADig_37c64411c02962258c7dfba51f139888
oai_identifier_str oai:localhost:20.500.12123/6024
network_acronym_str INTADig
repository_id_str l
network_name_str INTA Digital (INTA)
spelling Trend-cycles of vegetation dynamics as a tool for land degradation assessment and monitoringEasdale, Marcos HoracioFarina, Clara MariaHara, SofíaPerez Leon, Natalia JesicaUmaña, FernandoTittonell, Pablo AdrianBruzzone, Octavio AugustoDesertificaciónDegradaciónDesertificationDegradationMonitoringVigilanciaNDVISistemas de MonitoreoMARASRegión PatagónicaThe use of time series of Normalized Difference Vegetation Index (NDVI), obtained from satellite sensors has become frequent in studies for land degradation assessment and monitoring. Linear trends of NDVI are usually considered as indicators of vegetation dynamics and widely used as proxies for land degradation. Yet, long-term trends of NDVI often exhibit unidirectional (monotonic) but also cyclic (non-monotonic) dynamics, including mid-term oscillations, both of which are poorly captured by linear trends. Trend-cycle is a time series analysis that represents a smoothed version of a seasonally adjusted time series, which provides information on long-term movements while including changes in direction underlying the series. We assessed NDVI trend-cycles in Patagonia (Argentina) as proxies for land dynamics, integrating trend and medium-term cycles (> 4 years). We used MODIS images between years 2000 and mid-2018; trend-cycles were analysed using the Basis Pursuit method. We observed that trend-cycles explained a significant portion of total temporal variability (reaching almost 20%), from which most patterns were explained by non-monotonic behaviour. We identified five major patterns in vegetation dynamics: decreasing (0.1% of area), increasing (0.6%), recovery (48.8%), relapsing (36.8%) and no trend-cycle (13.8%). Contrary to what is generally seen in the literature, monotonic patterns and particularly decreasing trend-cycles were marginally recorded in the last 18 years of NDVI records in Patagonia.Instead, the greater proportion of the area was classified as initial or advanced recovery and initial relapsing patterns, which refer to phases of a cyclic behaviour. We call for the need to revisit the conceptualization of land degradation assessment by means of remote sensing, and to critically review the ability of linear trends to reflect vegetation dynamics. Finally, we discuss the potential use of trend-cycle as a tool to monitor land dynamics and progress towards land degradation neutrality.Fil: Easdale, Marcos Horacio. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Consejo Nacional de Investigaciones Cientificas y Técnicas. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; ArgentinaFil: Fariña, Clara María. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Consejo Nacional de Investigaciones Cientificas y Técnicas. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; ArgentinaFil: Hara, Sofía. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Consejo Nacional de Investigaciones Cientificas y Técnicas. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; ArgentinaFil: Pérez León, Natalia. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Consejo Nacional de Investigaciones Cientificas y Técnicas. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; ArgentinaFil: Umaña, Fernando. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche; ArgentinaFil: Tittonell, Pablo Adrian. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Consejo Nacional de Investigaciones Cientificas y Técnicas. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; ArgentinaFil: Bruzzone, Octavio Augusto.Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Consejo Nacional de Investigaciones Cientificas y Técnicas. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; ArgentinaElsevier2019-10-01T11:15:46Z2019-10-01T11:15:46Z2019-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12123/6024https://www.sciencedirect.com/science/article/pii/S1470160X193053081470-160Xhttps://doi.org/10.1016/j.ecolind.2019.105545Ecological Indicators 107 : 105545 (December 2019)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repo/semantics/restrictedAccess2025-09-04T09:48:11Zoai:localhost:20.500.12123/6024instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-09-04 09:48:12.333INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse
dc.title.none.fl_str_mv Trend-cycles of vegetation dynamics as a tool for land degradation assessment and monitoring
title Trend-cycles of vegetation dynamics as a tool for land degradation assessment and monitoring
spellingShingle Trend-cycles of vegetation dynamics as a tool for land degradation assessment and monitoring
Easdale, Marcos Horacio
Desertificación
Degradación
Desertification
Degradation
Monitoring
Vigilancia
NDVI
Sistemas de Monitoreo
MARAS
Región Patagónica
title_short Trend-cycles of vegetation dynamics as a tool for land degradation assessment and monitoring
title_full Trend-cycles of vegetation dynamics as a tool for land degradation assessment and monitoring
title_fullStr Trend-cycles of vegetation dynamics as a tool for land degradation assessment and monitoring
title_full_unstemmed Trend-cycles of vegetation dynamics as a tool for land degradation assessment and monitoring
title_sort Trend-cycles of vegetation dynamics as a tool for land degradation assessment and monitoring
dc.creator.none.fl_str_mv Easdale, Marcos Horacio
Farina, Clara Maria
Hara, Sofía
Perez Leon, Natalia Jesica
Umaña, Fernando
Tittonell, Pablo Adrian
Bruzzone, Octavio Augusto
author Easdale, Marcos Horacio
author_facet Easdale, Marcos Horacio
Farina, Clara Maria
Hara, Sofía
Perez Leon, Natalia Jesica
Umaña, Fernando
Tittonell, Pablo Adrian
Bruzzone, Octavio Augusto
author_role author
author2 Farina, Clara Maria
Hara, Sofía
Perez Leon, Natalia Jesica
Umaña, Fernando
Tittonell, Pablo Adrian
Bruzzone, Octavio Augusto
author2_role author
author
author
author
author
author
dc.subject.none.fl_str_mv Desertificación
Degradación
Desertification
Degradation
Monitoring
Vigilancia
NDVI
Sistemas de Monitoreo
MARAS
Región Patagónica
topic Desertificación
Degradación
Desertification
Degradation
Monitoring
Vigilancia
NDVI
Sistemas de Monitoreo
MARAS
Región Patagónica
dc.description.none.fl_txt_mv The use of time series of Normalized Difference Vegetation Index (NDVI), obtained from satellite sensors has become frequent in studies for land degradation assessment and monitoring. Linear trends of NDVI are usually considered as indicators of vegetation dynamics and widely used as proxies for land degradation. Yet, long-term trends of NDVI often exhibit unidirectional (monotonic) but also cyclic (non-monotonic) dynamics, including mid-term oscillations, both of which are poorly captured by linear trends. Trend-cycle is a time series analysis that represents a smoothed version of a seasonally adjusted time series, which provides information on long-term movements while including changes in direction underlying the series. We assessed NDVI trend-cycles in Patagonia (Argentina) as proxies for land dynamics, integrating trend and medium-term cycles (> 4 years). We used MODIS images between years 2000 and mid-2018; trend-cycles were analysed using the Basis Pursuit method. We observed that trend-cycles explained a significant portion of total temporal variability (reaching almost 20%), from which most patterns were explained by non-monotonic behaviour. We identified five major patterns in vegetation dynamics: decreasing (0.1% of area), increasing (0.6%), recovery (48.8%), relapsing (36.8%) and no trend-cycle (13.8%). Contrary to what is generally seen in the literature, monotonic patterns and particularly decreasing trend-cycles were marginally recorded in the last 18 years of NDVI records in Patagonia.Instead, the greater proportion of the area was classified as initial or advanced recovery and initial relapsing patterns, which refer to phases of a cyclic behaviour. We call for the need to revisit the conceptualization of land degradation assessment by means of remote sensing, and to critically review the ability of linear trends to reflect vegetation dynamics. Finally, we discuss the potential use of trend-cycle as a tool to monitor land dynamics and progress towards land degradation neutrality.
Fil: Easdale, Marcos Horacio. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Consejo Nacional de Investigaciones Cientificas y Técnicas. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentina
Fil: Fariña, Clara María. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Consejo Nacional de Investigaciones Cientificas y Técnicas. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentina
Fil: Hara, Sofía. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Consejo Nacional de Investigaciones Cientificas y Técnicas. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentina
Fil: Pérez León, Natalia. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Consejo Nacional de Investigaciones Cientificas y Técnicas. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentina
Fil: Umaña, Fernando. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche; Argentina
Fil: Tittonell, Pablo Adrian. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Consejo Nacional de Investigaciones Cientificas y Técnicas. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentina
Fil: Bruzzone, Octavio Augusto.Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Consejo Nacional de Investigaciones Cientificas y Técnicas. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentina
description The use of time series of Normalized Difference Vegetation Index (NDVI), obtained from satellite sensors has become frequent in studies for land degradation assessment and monitoring. Linear trends of NDVI are usually considered as indicators of vegetation dynamics and widely used as proxies for land degradation. Yet, long-term trends of NDVI often exhibit unidirectional (monotonic) but also cyclic (non-monotonic) dynamics, including mid-term oscillations, both of which are poorly captured by linear trends. Trend-cycle is a time series analysis that represents a smoothed version of a seasonally adjusted time series, which provides information on long-term movements while including changes in direction underlying the series. We assessed NDVI trend-cycles in Patagonia (Argentina) as proxies for land dynamics, integrating trend and medium-term cycles (> 4 years). We used MODIS images between years 2000 and mid-2018; trend-cycles were analysed using the Basis Pursuit method. We observed that trend-cycles explained a significant portion of total temporal variability (reaching almost 20%), from which most patterns were explained by non-monotonic behaviour. We identified five major patterns in vegetation dynamics: decreasing (0.1% of area), increasing (0.6%), recovery (48.8%), relapsing (36.8%) and no trend-cycle (13.8%). Contrary to what is generally seen in the literature, monotonic patterns and particularly decreasing trend-cycles were marginally recorded in the last 18 years of NDVI records in Patagonia.Instead, the greater proportion of the area was classified as initial or advanced recovery and initial relapsing patterns, which refer to phases of a cyclic behaviour. We call for the need to revisit the conceptualization of land degradation assessment by means of remote sensing, and to critically review the ability of linear trends to reflect vegetation dynamics. Finally, we discuss the potential use of trend-cycle as a tool to monitor land dynamics and progress towards land degradation neutrality.
publishDate 2019
dc.date.none.fl_str_mv 2019-10-01T11:15:46Z
2019-10-01T11:15:46Z
2019-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12123/6024
https://www.sciencedirect.com/science/article/pii/S1470160X19305308
1470-160X
https://doi.org/10.1016/j.ecolind.2019.105545
url http://hdl.handle.net/20.500.12123/6024
https://www.sciencedirect.com/science/article/pii/S1470160X19305308
https://doi.org/10.1016/j.ecolind.2019.105545
identifier_str_mv 1470-160X
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
eu_rights_str_mv restrictedAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv Ecological Indicators 107 : 105545 (December 2019)
reponame:INTA Digital (INTA)
instname:Instituto Nacional de Tecnología Agropecuaria
reponame_str INTA Digital (INTA)
collection INTA Digital (INTA)
instname_str Instituto Nacional de Tecnología Agropecuaria
repository.name.fl_str_mv INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria
repository.mail.fl_str_mv tripaldi.nicolas@inta.gob.ar
_version_ 1842341371279572992
score 12.623145