Trend-cycles of vegetation dynamics as a tool for land degradation assessment and monitoring
- Autores
- Easdale, Marcos Horacio; Farina, Clara Maria; Hara, Sofía; Perez Leon, Natalia Jesica; Umaña, Fernando; Tittonell, Pablo Adrian; Bruzzone, Octavio Augusto
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The use of time series of Normalized Difference Vegetation Index (NDVI), obtained from satellite sensors has become frequent in studies for land degradation assessment and monitoring. Linear trends of NDVI are usually considered as indicators of vegetation dynamics and widely used as proxies for land degradation. Yet, long-term trends of NDVI often exhibit unidirectional (monotonic) but also cyclic (non-monotonic) dynamics, including mid-term oscillations, both of which are poorly captured by linear trends. Trend-cycle is a time series analysis that represents a smoothed version of a seasonally adjusted time series, which provides information on long-term movements while including changes in direction underlying the series. We assessed NDVI trend-cycles in Patagonia (Argentina) as proxies for land dynamics, integrating trend and medium-term cycles (> 4 years). We used MODIS images between years 2000 and mid-2018; trend-cycles were analysed using the Basis Pursuit method. We observed that trend-cycles explained a significant portion of total temporal variability (reaching almost 20%), from which most patterns were explained by non-monotonic behaviour. We identified five major patterns in vegetation dynamics: decreasing (0.1% of area), increasing (0.6%), recovery (48.8%), relapsing (36.8%) and no trend-cycle (13.8%). Contrary to what is generally seen in the literature, monotonic patterns and particularly decreasing trend-cycles were marginally recorded in the last 18 years of NDVI records in Patagonia.Instead, the greater proportion of the area was classified as initial or advanced recovery and initial relapsing patterns, which refer to phases of a cyclic behaviour. We call for the need to revisit the conceptualization of land degradation assessment by means of remote sensing, and to critically review the ability of linear trends to reflect vegetation dynamics. Finally, we discuss the potential use of trend-cycle as a tool to monitor land dynamics and progress towards land degradation neutrality.
Fil: Easdale, Marcos Horacio. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Consejo Nacional de Investigaciones Cientificas y Técnicas. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentina
Fil: Fariña, Clara María. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Consejo Nacional de Investigaciones Cientificas y Técnicas. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentina
Fil: Hara, Sofía. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Consejo Nacional de Investigaciones Cientificas y Técnicas. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentina
Fil: Pérez León, Natalia. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Consejo Nacional de Investigaciones Cientificas y Técnicas. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentina
Fil: Umaña, Fernando. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche; Argentina
Fil: Tittonell, Pablo Adrian. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Consejo Nacional de Investigaciones Cientificas y Técnicas. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentina
Fil: Bruzzone, Octavio Augusto.Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Consejo Nacional de Investigaciones Cientificas y Técnicas. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentina - Fuente
- Ecological Indicators 107 : 105545 (December 2019)
- Materia
-
Desertificación
Degradación
Desertification
Degradation
Monitoring
Vigilancia
NDVI
Sistemas de Monitoreo
MARAS
Región Patagónica - Nivel de accesibilidad
- acceso restringido
- Condiciones de uso
- Repositorio
- Institución
- Instituto Nacional de Tecnología Agropecuaria
- OAI Identificador
- oai:localhost:20.500.12123/6024
Ver los metadatos del registro completo
id |
INTADig_37c64411c02962258c7dfba51f139888 |
---|---|
oai_identifier_str |
oai:localhost:20.500.12123/6024 |
network_acronym_str |
INTADig |
repository_id_str |
l |
network_name_str |
INTA Digital (INTA) |
spelling |
Trend-cycles of vegetation dynamics as a tool for land degradation assessment and monitoringEasdale, Marcos HoracioFarina, Clara MariaHara, SofíaPerez Leon, Natalia JesicaUmaña, FernandoTittonell, Pablo AdrianBruzzone, Octavio AugustoDesertificaciónDegradaciónDesertificationDegradationMonitoringVigilanciaNDVISistemas de MonitoreoMARASRegión PatagónicaThe use of time series of Normalized Difference Vegetation Index (NDVI), obtained from satellite sensors has become frequent in studies for land degradation assessment and monitoring. Linear trends of NDVI are usually considered as indicators of vegetation dynamics and widely used as proxies for land degradation. Yet, long-term trends of NDVI often exhibit unidirectional (monotonic) but also cyclic (non-monotonic) dynamics, including mid-term oscillations, both of which are poorly captured by linear trends. Trend-cycle is a time series analysis that represents a smoothed version of a seasonally adjusted time series, which provides information on long-term movements while including changes in direction underlying the series. We assessed NDVI trend-cycles in Patagonia (Argentina) as proxies for land dynamics, integrating trend and medium-term cycles (> 4 years). We used MODIS images between years 2000 and mid-2018; trend-cycles were analysed using the Basis Pursuit method. We observed that trend-cycles explained a significant portion of total temporal variability (reaching almost 20%), from which most patterns were explained by non-monotonic behaviour. We identified five major patterns in vegetation dynamics: decreasing (0.1% of area), increasing (0.6%), recovery (48.8%), relapsing (36.8%) and no trend-cycle (13.8%). Contrary to what is generally seen in the literature, monotonic patterns and particularly decreasing trend-cycles were marginally recorded in the last 18 years of NDVI records in Patagonia.Instead, the greater proportion of the area was classified as initial or advanced recovery and initial relapsing patterns, which refer to phases of a cyclic behaviour. We call for the need to revisit the conceptualization of land degradation assessment by means of remote sensing, and to critically review the ability of linear trends to reflect vegetation dynamics. Finally, we discuss the potential use of trend-cycle as a tool to monitor land dynamics and progress towards land degradation neutrality.Fil: Easdale, Marcos Horacio. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Consejo Nacional de Investigaciones Cientificas y Técnicas. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; ArgentinaFil: Fariña, Clara María. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Consejo Nacional de Investigaciones Cientificas y Técnicas. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; ArgentinaFil: Hara, Sofía. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Consejo Nacional de Investigaciones Cientificas y Técnicas. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; ArgentinaFil: Pérez León, Natalia. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Consejo Nacional de Investigaciones Cientificas y Técnicas. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; ArgentinaFil: Umaña, Fernando. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche; ArgentinaFil: Tittonell, Pablo Adrian. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Consejo Nacional de Investigaciones Cientificas y Técnicas. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; ArgentinaFil: Bruzzone, Octavio Augusto.Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Consejo Nacional de Investigaciones Cientificas y Técnicas. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; ArgentinaElsevier2019-10-01T11:15:46Z2019-10-01T11:15:46Z2019-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12123/6024https://www.sciencedirect.com/science/article/pii/S1470160X193053081470-160Xhttps://doi.org/10.1016/j.ecolind.2019.105545Ecological Indicators 107 : 105545 (December 2019)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repo/semantics/restrictedAccess2025-09-04T09:48:11Zoai:localhost:20.500.12123/6024instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-09-04 09:48:12.333INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse |
dc.title.none.fl_str_mv |
Trend-cycles of vegetation dynamics as a tool for land degradation assessment and monitoring |
title |
Trend-cycles of vegetation dynamics as a tool for land degradation assessment and monitoring |
spellingShingle |
Trend-cycles of vegetation dynamics as a tool for land degradation assessment and monitoring Easdale, Marcos Horacio Desertificación Degradación Desertification Degradation Monitoring Vigilancia NDVI Sistemas de Monitoreo MARAS Región Patagónica |
title_short |
Trend-cycles of vegetation dynamics as a tool for land degradation assessment and monitoring |
title_full |
Trend-cycles of vegetation dynamics as a tool for land degradation assessment and monitoring |
title_fullStr |
Trend-cycles of vegetation dynamics as a tool for land degradation assessment and monitoring |
title_full_unstemmed |
Trend-cycles of vegetation dynamics as a tool for land degradation assessment and monitoring |
title_sort |
Trend-cycles of vegetation dynamics as a tool for land degradation assessment and monitoring |
dc.creator.none.fl_str_mv |
Easdale, Marcos Horacio Farina, Clara Maria Hara, Sofía Perez Leon, Natalia Jesica Umaña, Fernando Tittonell, Pablo Adrian Bruzzone, Octavio Augusto |
author |
Easdale, Marcos Horacio |
author_facet |
Easdale, Marcos Horacio Farina, Clara Maria Hara, Sofía Perez Leon, Natalia Jesica Umaña, Fernando Tittonell, Pablo Adrian Bruzzone, Octavio Augusto |
author_role |
author |
author2 |
Farina, Clara Maria Hara, Sofía Perez Leon, Natalia Jesica Umaña, Fernando Tittonell, Pablo Adrian Bruzzone, Octavio Augusto |
author2_role |
author author author author author author |
dc.subject.none.fl_str_mv |
Desertificación Degradación Desertification Degradation Monitoring Vigilancia NDVI Sistemas de Monitoreo MARAS Región Patagónica |
topic |
Desertificación Degradación Desertification Degradation Monitoring Vigilancia NDVI Sistemas de Monitoreo MARAS Región Patagónica |
dc.description.none.fl_txt_mv |
The use of time series of Normalized Difference Vegetation Index (NDVI), obtained from satellite sensors has become frequent in studies for land degradation assessment and monitoring. Linear trends of NDVI are usually considered as indicators of vegetation dynamics and widely used as proxies for land degradation. Yet, long-term trends of NDVI often exhibit unidirectional (monotonic) but also cyclic (non-monotonic) dynamics, including mid-term oscillations, both of which are poorly captured by linear trends. Trend-cycle is a time series analysis that represents a smoothed version of a seasonally adjusted time series, which provides information on long-term movements while including changes in direction underlying the series. We assessed NDVI trend-cycles in Patagonia (Argentina) as proxies for land dynamics, integrating trend and medium-term cycles (> 4 years). We used MODIS images between years 2000 and mid-2018; trend-cycles were analysed using the Basis Pursuit method. We observed that trend-cycles explained a significant portion of total temporal variability (reaching almost 20%), from which most patterns were explained by non-monotonic behaviour. We identified five major patterns in vegetation dynamics: decreasing (0.1% of area), increasing (0.6%), recovery (48.8%), relapsing (36.8%) and no trend-cycle (13.8%). Contrary to what is generally seen in the literature, monotonic patterns and particularly decreasing trend-cycles were marginally recorded in the last 18 years of NDVI records in Patagonia.Instead, the greater proportion of the area was classified as initial or advanced recovery and initial relapsing patterns, which refer to phases of a cyclic behaviour. We call for the need to revisit the conceptualization of land degradation assessment by means of remote sensing, and to critically review the ability of linear trends to reflect vegetation dynamics. Finally, we discuss the potential use of trend-cycle as a tool to monitor land dynamics and progress towards land degradation neutrality. Fil: Easdale, Marcos Horacio. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Consejo Nacional de Investigaciones Cientificas y Técnicas. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentina Fil: Fariña, Clara María. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Consejo Nacional de Investigaciones Cientificas y Técnicas. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentina Fil: Hara, Sofía. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Consejo Nacional de Investigaciones Cientificas y Técnicas. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentina Fil: Pérez León, Natalia. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Consejo Nacional de Investigaciones Cientificas y Técnicas. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentina Fil: Umaña, Fernando. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche; Argentina Fil: Tittonell, Pablo Adrian. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Consejo Nacional de Investigaciones Cientificas y Técnicas. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentina Fil: Bruzzone, Octavio Augusto.Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Consejo Nacional de Investigaciones Cientificas y Técnicas. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentina |
description |
The use of time series of Normalized Difference Vegetation Index (NDVI), obtained from satellite sensors has become frequent in studies for land degradation assessment and monitoring. Linear trends of NDVI are usually considered as indicators of vegetation dynamics and widely used as proxies for land degradation. Yet, long-term trends of NDVI often exhibit unidirectional (monotonic) but also cyclic (non-monotonic) dynamics, including mid-term oscillations, both of which are poorly captured by linear trends. Trend-cycle is a time series analysis that represents a smoothed version of a seasonally adjusted time series, which provides information on long-term movements while including changes in direction underlying the series. We assessed NDVI trend-cycles in Patagonia (Argentina) as proxies for land dynamics, integrating trend and medium-term cycles (> 4 years). We used MODIS images between years 2000 and mid-2018; trend-cycles were analysed using the Basis Pursuit method. We observed that trend-cycles explained a significant portion of total temporal variability (reaching almost 20%), from which most patterns were explained by non-monotonic behaviour. We identified five major patterns in vegetation dynamics: decreasing (0.1% of area), increasing (0.6%), recovery (48.8%), relapsing (36.8%) and no trend-cycle (13.8%). Contrary to what is generally seen in the literature, monotonic patterns and particularly decreasing trend-cycles were marginally recorded in the last 18 years of NDVI records in Patagonia.Instead, the greater proportion of the area was classified as initial or advanced recovery and initial relapsing patterns, which refer to phases of a cyclic behaviour. We call for the need to revisit the conceptualization of land degradation assessment by means of remote sensing, and to critically review the ability of linear trends to reflect vegetation dynamics. Finally, we discuss the potential use of trend-cycle as a tool to monitor land dynamics and progress towards land degradation neutrality. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-10-01T11:15:46Z 2019-10-01T11:15:46Z 2019-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12123/6024 https://www.sciencedirect.com/science/article/pii/S1470160X19305308 1470-160X https://doi.org/10.1016/j.ecolind.2019.105545 |
url |
http://hdl.handle.net/20.500.12123/6024 https://www.sciencedirect.com/science/article/pii/S1470160X19305308 https://doi.org/10.1016/j.ecolind.2019.105545 |
identifier_str_mv |
1470-160X |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
eu_rights_str_mv |
restrictedAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
Ecological Indicators 107 : 105545 (December 2019) reponame:INTA Digital (INTA) instname:Instituto Nacional de Tecnología Agropecuaria |
reponame_str |
INTA Digital (INTA) |
collection |
INTA Digital (INTA) |
instname_str |
Instituto Nacional de Tecnología Agropecuaria |
repository.name.fl_str_mv |
INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria |
repository.mail.fl_str_mv |
tripaldi.nicolas@inta.gob.ar |
_version_ |
1842341371279572992 |
score |
12.623145 |