Evaluation of Agricultural Production Systems Simulator as yield predictor of Panicum virgatum and Miscanthus x giganteus in several US environments
- Autores
- Ojeda, Jonathan Jesus; Volenec, Jeffrey J.; Brouder, Sylvie M.; Caviglia, Octavio; Agnusdei, Monica Graciela
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Simulation models for perennial energy crops such as switchgrass (Panicum virgatum L.) and Miscanthus (Miscanthus x giganteus) can be useful tools to design management strategies for biomass productivity improvement in US environments. The Agricultural Production Systems Simulator (APSIM) is a biophysical model with the potential to simulate the growth of perennial crops. APSIM crop modules do not exist for switchgrass and Miscanthus, however, re-parameterization of existing APSIM modules could be used to simulate the growth of these perennials. Our aim was to evaluate the ability of APSIM to predict the dry matter (DM) yield of switchgrass and Miscanthus at several US locations. The Lucerne (for switchgrass) and Sugarcane (for Miscanthus) APSIM modules were calibrated using data from four locations in Indiana. A sensitivity analysis informed the relative impact of changes in plant and soil parameters of APSIM Lucerne and APSIM Sugarcane modules. An independent dataset of switchgrass and Miscanthus DM yields from several US environments was used to validate these re-parameterized APSIM modules. The re-parameterized modules simulated DM yields of switchgrass [0.95 for CCC (concordance correlation coefficient) and 0 for SB (bias of the simulation from the measurement)] and Miscanthus (0.65 and 0% for CCC and SB, respectively) accurately at most locations with the exception of switchgrass at southern US sites (0.01 for CCC and 2% for SB). Therefore, the APSIM model is a promising tool for simulating DM yields for switchgrass and Miscanthus while accounting for environmental variability. Given our study was strictly based on APSIM calibrations at Indiana locations, additional research using more extensive calibration data may enhance APSIM robustness.
EEA Paraná
Fil: Ojeda, Jonathan Jesus. Universidad Nacional de Entre Ríos. Facultad de Ciencias Agropecuarias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Volenec, Jeffrey J. Purdue University. Department of Agronomy; Estados Unidos
Fil: Brouder, Sylvie M. Purdue University. Department of Agronomy; Estados Unidos
Fil: Caviglia, Octavio. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Paraná. Grupo Ecología Forestal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Entre Ríos. Facultad de Ciencias Agropecuarias; Argentina
Fil: Agnusdei, Monica Graciela. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina - Fuente
- Global change biology Bioenergy 9 (4) : 796–816. (April 2017)
- Materia
-
Panicum Virgatum
Miscanthus
Sistemas de Explotación
Rendimiento
Técnicas de Predicción
Modelos de Simulación
Bioenergía
Biomasa
Farming Systems
Yields
Forecasting
Simulation Models
Bioenergy
Biomass
Estados Unidos
Switchgrass
Agricultural Production Systems Simulator
APSIM - Nivel de accesibilidad
- acceso restringido
- Condiciones de uso
- Repositorio
- Institución
- Instituto Nacional de Tecnología Agropecuaria
- OAI Identificador
- oai:localhost:20.500.12123/3508
Ver los metadatos del registro completo
id |
INTADig_3008fff03330f049eb2e8b4c05946ea0 |
---|---|
oai_identifier_str |
oai:localhost:20.500.12123/3508 |
network_acronym_str |
INTADig |
repository_id_str |
l |
network_name_str |
INTA Digital (INTA) |
spelling |
Evaluation of Agricultural Production Systems Simulator as yield predictor of Panicum virgatum and Miscanthus x giganteus in several US environmentsOjeda, Jonathan JesusVolenec, Jeffrey J.Brouder, Sylvie M.Caviglia, OctavioAgnusdei, Monica GracielaPanicum VirgatumMiscanthusSistemas de ExplotaciónRendimientoTécnicas de PredicciónModelos de SimulaciónBioenergíaBiomasaFarming SystemsYieldsForecastingSimulation ModelsBioenergyBiomassEstados UnidosSwitchgrassAgricultural Production Systems SimulatorAPSIMSimulation models for perennial energy crops such as switchgrass (Panicum virgatum L.) and Miscanthus (Miscanthus x giganteus) can be useful tools to design management strategies for biomass productivity improvement in US environments. The Agricultural Production Systems Simulator (APSIM) is a biophysical model with the potential to simulate the growth of perennial crops. APSIM crop modules do not exist for switchgrass and Miscanthus, however, re-parameterization of existing APSIM modules could be used to simulate the growth of these perennials. Our aim was to evaluate the ability of APSIM to predict the dry matter (DM) yield of switchgrass and Miscanthus at several US locations. The Lucerne (for switchgrass) and Sugarcane (for Miscanthus) APSIM modules were calibrated using data from four locations in Indiana. A sensitivity analysis informed the relative impact of changes in plant and soil parameters of APSIM Lucerne and APSIM Sugarcane modules. An independent dataset of switchgrass and Miscanthus DM yields from several US environments was used to validate these re-parameterized APSIM modules. The re-parameterized modules simulated DM yields of switchgrass [0.95 for CCC (concordance correlation coefficient) and 0 for SB (bias of the simulation from the measurement)] and Miscanthus (0.65 and 0% for CCC and SB, respectively) accurately at most locations with the exception of switchgrass at southern US sites (0.01 for CCC and 2% for SB). Therefore, the APSIM model is a promising tool for simulating DM yields for switchgrass and Miscanthus while accounting for environmental variability. Given our study was strictly based on APSIM calibrations at Indiana locations, additional research using more extensive calibration data may enhance APSIM robustness.EEA ParanáFil: Ojeda, Jonathan Jesus. Universidad Nacional de Entre Ríos. Facultad de Ciencias Agropecuarias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Volenec, Jeffrey J. Purdue University. Department of Agronomy; Estados UnidosFil: Brouder, Sylvie M. Purdue University. Department of Agronomy; Estados UnidosFil: Caviglia, Octavio. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Paraná. Grupo Ecología Forestal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Entre Ríos. Facultad de Ciencias Agropecuarias; ArgentinaFil: Agnusdei, Monica Graciela. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; ArgentinaWiley2018-09-28T15:14:41Z2018-09-28T15:14:41Z2017info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12123/3508https://onlinelibrary.wiley.com/doi/full/10.1111/gcbb.123841757-1707https://doi.org/10.1111/gcbb.12384Global change biology Bioenergy 9 (4) : 796–816. (April 2017)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repo/semantics/restrictedAccess2025-09-29T13:44:27Zoai:localhost:20.500.12123/3508instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-09-29 13:44:27.559INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse |
dc.title.none.fl_str_mv |
Evaluation of Agricultural Production Systems Simulator as yield predictor of Panicum virgatum and Miscanthus x giganteus in several US environments |
title |
Evaluation of Agricultural Production Systems Simulator as yield predictor of Panicum virgatum and Miscanthus x giganteus in several US environments |
spellingShingle |
Evaluation of Agricultural Production Systems Simulator as yield predictor of Panicum virgatum and Miscanthus x giganteus in several US environments Ojeda, Jonathan Jesus Panicum Virgatum Miscanthus Sistemas de Explotación Rendimiento Técnicas de Predicción Modelos de Simulación Bioenergía Biomasa Farming Systems Yields Forecasting Simulation Models Bioenergy Biomass Estados Unidos Switchgrass Agricultural Production Systems Simulator APSIM |
title_short |
Evaluation of Agricultural Production Systems Simulator as yield predictor of Panicum virgatum and Miscanthus x giganteus in several US environments |
title_full |
Evaluation of Agricultural Production Systems Simulator as yield predictor of Panicum virgatum and Miscanthus x giganteus in several US environments |
title_fullStr |
Evaluation of Agricultural Production Systems Simulator as yield predictor of Panicum virgatum and Miscanthus x giganteus in several US environments |
title_full_unstemmed |
Evaluation of Agricultural Production Systems Simulator as yield predictor of Panicum virgatum and Miscanthus x giganteus in several US environments |
title_sort |
Evaluation of Agricultural Production Systems Simulator as yield predictor of Panicum virgatum and Miscanthus x giganteus in several US environments |
dc.creator.none.fl_str_mv |
Ojeda, Jonathan Jesus Volenec, Jeffrey J. Brouder, Sylvie M. Caviglia, Octavio Agnusdei, Monica Graciela |
author |
Ojeda, Jonathan Jesus |
author_facet |
Ojeda, Jonathan Jesus Volenec, Jeffrey J. Brouder, Sylvie M. Caviglia, Octavio Agnusdei, Monica Graciela |
author_role |
author |
author2 |
Volenec, Jeffrey J. Brouder, Sylvie M. Caviglia, Octavio Agnusdei, Monica Graciela |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Panicum Virgatum Miscanthus Sistemas de Explotación Rendimiento Técnicas de Predicción Modelos de Simulación Bioenergía Biomasa Farming Systems Yields Forecasting Simulation Models Bioenergy Biomass Estados Unidos Switchgrass Agricultural Production Systems Simulator APSIM |
topic |
Panicum Virgatum Miscanthus Sistemas de Explotación Rendimiento Técnicas de Predicción Modelos de Simulación Bioenergía Biomasa Farming Systems Yields Forecasting Simulation Models Bioenergy Biomass Estados Unidos Switchgrass Agricultural Production Systems Simulator APSIM |
dc.description.none.fl_txt_mv |
Simulation models for perennial energy crops such as switchgrass (Panicum virgatum L.) and Miscanthus (Miscanthus x giganteus) can be useful tools to design management strategies for biomass productivity improvement in US environments. The Agricultural Production Systems Simulator (APSIM) is a biophysical model with the potential to simulate the growth of perennial crops. APSIM crop modules do not exist for switchgrass and Miscanthus, however, re-parameterization of existing APSIM modules could be used to simulate the growth of these perennials. Our aim was to evaluate the ability of APSIM to predict the dry matter (DM) yield of switchgrass and Miscanthus at several US locations. The Lucerne (for switchgrass) and Sugarcane (for Miscanthus) APSIM modules were calibrated using data from four locations in Indiana. A sensitivity analysis informed the relative impact of changes in plant and soil parameters of APSIM Lucerne and APSIM Sugarcane modules. An independent dataset of switchgrass and Miscanthus DM yields from several US environments was used to validate these re-parameterized APSIM modules. The re-parameterized modules simulated DM yields of switchgrass [0.95 for CCC (concordance correlation coefficient) and 0 for SB (bias of the simulation from the measurement)] and Miscanthus (0.65 and 0% for CCC and SB, respectively) accurately at most locations with the exception of switchgrass at southern US sites (0.01 for CCC and 2% for SB). Therefore, the APSIM model is a promising tool for simulating DM yields for switchgrass and Miscanthus while accounting for environmental variability. Given our study was strictly based on APSIM calibrations at Indiana locations, additional research using more extensive calibration data may enhance APSIM robustness. EEA Paraná Fil: Ojeda, Jonathan Jesus. Universidad Nacional de Entre Ríos. Facultad de Ciencias Agropecuarias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Volenec, Jeffrey J. Purdue University. Department of Agronomy; Estados Unidos Fil: Brouder, Sylvie M. Purdue University. Department of Agronomy; Estados Unidos Fil: Caviglia, Octavio. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Paraná. Grupo Ecología Forestal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Entre Ríos. Facultad de Ciencias Agropecuarias; Argentina Fil: Agnusdei, Monica Graciela. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina |
description |
Simulation models for perennial energy crops such as switchgrass (Panicum virgatum L.) and Miscanthus (Miscanthus x giganteus) can be useful tools to design management strategies for biomass productivity improvement in US environments. The Agricultural Production Systems Simulator (APSIM) is a biophysical model with the potential to simulate the growth of perennial crops. APSIM crop modules do not exist for switchgrass and Miscanthus, however, re-parameterization of existing APSIM modules could be used to simulate the growth of these perennials. Our aim was to evaluate the ability of APSIM to predict the dry matter (DM) yield of switchgrass and Miscanthus at several US locations. The Lucerne (for switchgrass) and Sugarcane (for Miscanthus) APSIM modules were calibrated using data from four locations in Indiana. A sensitivity analysis informed the relative impact of changes in plant and soil parameters of APSIM Lucerne and APSIM Sugarcane modules. An independent dataset of switchgrass and Miscanthus DM yields from several US environments was used to validate these re-parameterized APSIM modules. The re-parameterized modules simulated DM yields of switchgrass [0.95 for CCC (concordance correlation coefficient) and 0 for SB (bias of the simulation from the measurement)] and Miscanthus (0.65 and 0% for CCC and SB, respectively) accurately at most locations with the exception of switchgrass at southern US sites (0.01 for CCC and 2% for SB). Therefore, the APSIM model is a promising tool for simulating DM yields for switchgrass and Miscanthus while accounting for environmental variability. Given our study was strictly based on APSIM calibrations at Indiana locations, additional research using more extensive calibration data may enhance APSIM robustness. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017 2018-09-28T15:14:41Z 2018-09-28T15:14:41Z |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12123/3508 https://onlinelibrary.wiley.com/doi/full/10.1111/gcbb.12384 1757-1707 https://doi.org/10.1111/gcbb.12384 |
url |
http://hdl.handle.net/20.500.12123/3508 https://onlinelibrary.wiley.com/doi/full/10.1111/gcbb.12384 https://doi.org/10.1111/gcbb.12384 |
identifier_str_mv |
1757-1707 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
eu_rights_str_mv |
restrictedAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Wiley |
publisher.none.fl_str_mv |
Wiley |
dc.source.none.fl_str_mv |
Global change biology Bioenergy 9 (4) : 796–816. (April 2017) reponame:INTA Digital (INTA) instname:Instituto Nacional de Tecnología Agropecuaria |
reponame_str |
INTA Digital (INTA) |
collection |
INTA Digital (INTA) |
instname_str |
Instituto Nacional de Tecnología Agropecuaria |
repository.name.fl_str_mv |
INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria |
repository.mail.fl_str_mv |
tripaldi.nicolas@inta.gob.ar |
_version_ |
1844619126451994624 |
score |
12.558318 |