Evaluation of Agricultural Production Systems Simulator as yield predictor of Panicum virgatum and Miscanthus x giganteus in several US environments

Autores
Ojeda, Jonathan Jesus; Volenec, Jeffrey J.; Brouder, Sylvie M.; Caviglia, Octavio; Agnusdei, Monica Graciela
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Simulation models for perennial energy crops such as switchgrass (Panicum virgatum L.) and Miscanthus (Miscanthus x giganteus) can be useful tools to design management strategies for biomass productivity improvement in US environments. The Agricultural Production Systems Simulator (APSIM) is a biophysical model with the potential to simulate the growth of perennial crops. APSIM crop modules do not exist for switchgrass and Miscanthus, however, re-parameterization of existing APSIM modules could be used to simulate the growth of these perennials. Our aim was to evaluate the ability of APSIM to predict the dry matter (DM) yield of switchgrass and Miscanthus at several US locations. The Lucerne (for switchgrass) and Sugarcane (for Miscanthus) APSIM modules were calibrated using data from four locations in Indiana. A sensitivity analysis informed the relative impact of changes in plant and soil parameters of APSIM Lucerne and APSIM Sugarcane modules. An independent dataset of switchgrass and Miscanthus DM yields from several US environments was used to validate these re-parameterized APSIM modules. The re-parameterized modules simulated DM yields of switchgrass [0.95 for CCC (concordance correlation coefficient) and 0 for SB (bias of the simulation from the measurement)] and Miscanthus (0.65 and 0% for CCC and SB, respectively) accurately at most locations with the exception of switchgrass at southern US sites (0.01 for CCC and 2% for SB). Therefore, the APSIM model is a promising tool for simulating DM yields for switchgrass and Miscanthus while accounting for environmental variability. Given our study was strictly based on APSIM calibrations at Indiana locations, additional research using more extensive calibration data may enhance APSIM robustness.
EEA Paraná
Fil: Ojeda, Jonathan Jesus. Universidad Nacional de Entre Ríos. Facultad de Ciencias Agropecuarias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Volenec, Jeffrey J. Purdue University. Department of Agronomy; Estados Unidos
Fil: Brouder, Sylvie M. Purdue University. Department of Agronomy; Estados Unidos
Fil: Caviglia, Octavio. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Paraná. Grupo Ecología Forestal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Entre Ríos. Facultad de Ciencias Agropecuarias; Argentina
Fil: Agnusdei, Monica Graciela. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina
Fuente
Global change biology Bioenergy 9 (4) : 796–816. (April 2017)
Materia
Panicum Virgatum
Miscanthus
Sistemas de Explotación
Rendimiento
Técnicas de Predicción
Modelos de Simulación
Bioenergía
Biomasa
Farming Systems
Yields
Forecasting
Simulation Models
Bioenergy
Biomass
Estados Unidos
Switchgrass
Agricultural Production Systems Simulator
APSIM
Nivel de accesibilidad
acceso restringido
Condiciones de uso
Repositorio
INTA Digital (INTA)
Institución
Instituto Nacional de Tecnología Agropecuaria
OAI Identificador
oai:localhost:20.500.12123/3508

id INTADig_3008fff03330f049eb2e8b4c05946ea0
oai_identifier_str oai:localhost:20.500.12123/3508
network_acronym_str INTADig
repository_id_str l
network_name_str INTA Digital (INTA)
spelling Evaluation of Agricultural Production Systems Simulator as yield predictor of Panicum virgatum and Miscanthus x giganteus in several US environmentsOjeda, Jonathan JesusVolenec, Jeffrey J.Brouder, Sylvie M.Caviglia, OctavioAgnusdei, Monica GracielaPanicum VirgatumMiscanthusSistemas de ExplotaciónRendimientoTécnicas de PredicciónModelos de SimulaciónBioenergíaBiomasaFarming SystemsYieldsForecastingSimulation ModelsBioenergyBiomassEstados UnidosSwitchgrassAgricultural Production Systems SimulatorAPSIMSimulation models for perennial energy crops such as switchgrass (Panicum virgatum L.) and Miscanthus (Miscanthus x giganteus) can be useful tools to design management strategies for biomass productivity improvement in US environments. The Agricultural Production Systems Simulator (APSIM) is a biophysical model with the potential to simulate the growth of perennial crops. APSIM crop modules do not exist for switchgrass and Miscanthus, however, re-parameterization of existing APSIM modules could be used to simulate the growth of these perennials. Our aim was to evaluate the ability of APSIM to predict the dry matter (DM) yield of switchgrass and Miscanthus at several US locations. The Lucerne (for switchgrass) and Sugarcane (for Miscanthus) APSIM modules were calibrated using data from four locations in Indiana. A sensitivity analysis informed the relative impact of changes in plant and soil parameters of APSIM Lucerne and APSIM Sugarcane modules. An independent dataset of switchgrass and Miscanthus DM yields from several US environments was used to validate these re-parameterized APSIM modules. The re-parameterized modules simulated DM yields of switchgrass [0.95 for CCC (concordance correlation coefficient) and 0 for SB (bias of the simulation from the measurement)] and Miscanthus (0.65 and 0% for CCC and SB, respectively) accurately at most locations with the exception of switchgrass at southern US sites (0.01 for CCC and 2% for SB). Therefore, the APSIM model is a promising tool for simulating DM yields for switchgrass and Miscanthus while accounting for environmental variability. Given our study was strictly based on APSIM calibrations at Indiana locations, additional research using more extensive calibration data may enhance APSIM robustness.EEA ParanáFil: Ojeda, Jonathan Jesus. Universidad Nacional de Entre Ríos. Facultad de Ciencias Agropecuarias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Volenec, Jeffrey J. Purdue University. Department of Agronomy; Estados UnidosFil: Brouder, Sylvie M. Purdue University. Department of Agronomy; Estados UnidosFil: Caviglia, Octavio. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Paraná. Grupo Ecología Forestal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Entre Ríos. Facultad de Ciencias Agropecuarias; ArgentinaFil: Agnusdei, Monica Graciela. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; ArgentinaWiley2018-09-28T15:14:41Z2018-09-28T15:14:41Z2017info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12123/3508https://onlinelibrary.wiley.com/doi/full/10.1111/gcbb.123841757-1707https://doi.org/10.1111/gcbb.12384Global change biology Bioenergy 9 (4) : 796–816. (April 2017)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repo/semantics/restrictedAccess2025-09-29T13:44:27Zoai:localhost:20.500.12123/3508instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-09-29 13:44:27.559INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse
dc.title.none.fl_str_mv Evaluation of Agricultural Production Systems Simulator as yield predictor of Panicum virgatum and Miscanthus x giganteus in several US environments
title Evaluation of Agricultural Production Systems Simulator as yield predictor of Panicum virgatum and Miscanthus x giganteus in several US environments
spellingShingle Evaluation of Agricultural Production Systems Simulator as yield predictor of Panicum virgatum and Miscanthus x giganteus in several US environments
Ojeda, Jonathan Jesus
Panicum Virgatum
Miscanthus
Sistemas de Explotación
Rendimiento
Técnicas de Predicción
Modelos de Simulación
Bioenergía
Biomasa
Farming Systems
Yields
Forecasting
Simulation Models
Bioenergy
Biomass
Estados Unidos
Switchgrass
Agricultural Production Systems Simulator
APSIM
title_short Evaluation of Agricultural Production Systems Simulator as yield predictor of Panicum virgatum and Miscanthus x giganteus in several US environments
title_full Evaluation of Agricultural Production Systems Simulator as yield predictor of Panicum virgatum and Miscanthus x giganteus in several US environments
title_fullStr Evaluation of Agricultural Production Systems Simulator as yield predictor of Panicum virgatum and Miscanthus x giganteus in several US environments
title_full_unstemmed Evaluation of Agricultural Production Systems Simulator as yield predictor of Panicum virgatum and Miscanthus x giganteus in several US environments
title_sort Evaluation of Agricultural Production Systems Simulator as yield predictor of Panicum virgatum and Miscanthus x giganteus in several US environments
dc.creator.none.fl_str_mv Ojeda, Jonathan Jesus
Volenec, Jeffrey J.
Brouder, Sylvie M.
Caviglia, Octavio
Agnusdei, Monica Graciela
author Ojeda, Jonathan Jesus
author_facet Ojeda, Jonathan Jesus
Volenec, Jeffrey J.
Brouder, Sylvie M.
Caviglia, Octavio
Agnusdei, Monica Graciela
author_role author
author2 Volenec, Jeffrey J.
Brouder, Sylvie M.
Caviglia, Octavio
Agnusdei, Monica Graciela
author2_role author
author
author
author
dc.subject.none.fl_str_mv Panicum Virgatum
Miscanthus
Sistemas de Explotación
Rendimiento
Técnicas de Predicción
Modelos de Simulación
Bioenergía
Biomasa
Farming Systems
Yields
Forecasting
Simulation Models
Bioenergy
Biomass
Estados Unidos
Switchgrass
Agricultural Production Systems Simulator
APSIM
topic Panicum Virgatum
Miscanthus
Sistemas de Explotación
Rendimiento
Técnicas de Predicción
Modelos de Simulación
Bioenergía
Biomasa
Farming Systems
Yields
Forecasting
Simulation Models
Bioenergy
Biomass
Estados Unidos
Switchgrass
Agricultural Production Systems Simulator
APSIM
dc.description.none.fl_txt_mv Simulation models for perennial energy crops such as switchgrass (Panicum virgatum L.) and Miscanthus (Miscanthus x giganteus) can be useful tools to design management strategies for biomass productivity improvement in US environments. The Agricultural Production Systems Simulator (APSIM) is a biophysical model with the potential to simulate the growth of perennial crops. APSIM crop modules do not exist for switchgrass and Miscanthus, however, re-parameterization of existing APSIM modules could be used to simulate the growth of these perennials. Our aim was to evaluate the ability of APSIM to predict the dry matter (DM) yield of switchgrass and Miscanthus at several US locations. The Lucerne (for switchgrass) and Sugarcane (for Miscanthus) APSIM modules were calibrated using data from four locations in Indiana. A sensitivity analysis informed the relative impact of changes in plant and soil parameters of APSIM Lucerne and APSIM Sugarcane modules. An independent dataset of switchgrass and Miscanthus DM yields from several US environments was used to validate these re-parameterized APSIM modules. The re-parameterized modules simulated DM yields of switchgrass [0.95 for CCC (concordance correlation coefficient) and 0 for SB (bias of the simulation from the measurement)] and Miscanthus (0.65 and 0% for CCC and SB, respectively) accurately at most locations with the exception of switchgrass at southern US sites (0.01 for CCC and 2% for SB). Therefore, the APSIM model is a promising tool for simulating DM yields for switchgrass and Miscanthus while accounting for environmental variability. Given our study was strictly based on APSIM calibrations at Indiana locations, additional research using more extensive calibration data may enhance APSIM robustness.
EEA Paraná
Fil: Ojeda, Jonathan Jesus. Universidad Nacional de Entre Ríos. Facultad de Ciencias Agropecuarias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Volenec, Jeffrey J. Purdue University. Department of Agronomy; Estados Unidos
Fil: Brouder, Sylvie M. Purdue University. Department of Agronomy; Estados Unidos
Fil: Caviglia, Octavio. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Paraná. Grupo Ecología Forestal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Entre Ríos. Facultad de Ciencias Agropecuarias; Argentina
Fil: Agnusdei, Monica Graciela. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina
description Simulation models for perennial energy crops such as switchgrass (Panicum virgatum L.) and Miscanthus (Miscanthus x giganteus) can be useful tools to design management strategies for biomass productivity improvement in US environments. The Agricultural Production Systems Simulator (APSIM) is a biophysical model with the potential to simulate the growth of perennial crops. APSIM crop modules do not exist for switchgrass and Miscanthus, however, re-parameterization of existing APSIM modules could be used to simulate the growth of these perennials. Our aim was to evaluate the ability of APSIM to predict the dry matter (DM) yield of switchgrass and Miscanthus at several US locations. The Lucerne (for switchgrass) and Sugarcane (for Miscanthus) APSIM modules were calibrated using data from four locations in Indiana. A sensitivity analysis informed the relative impact of changes in plant and soil parameters of APSIM Lucerne and APSIM Sugarcane modules. An independent dataset of switchgrass and Miscanthus DM yields from several US environments was used to validate these re-parameterized APSIM modules. The re-parameterized modules simulated DM yields of switchgrass [0.95 for CCC (concordance correlation coefficient) and 0 for SB (bias of the simulation from the measurement)] and Miscanthus (0.65 and 0% for CCC and SB, respectively) accurately at most locations with the exception of switchgrass at southern US sites (0.01 for CCC and 2% for SB). Therefore, the APSIM model is a promising tool for simulating DM yields for switchgrass and Miscanthus while accounting for environmental variability. Given our study was strictly based on APSIM calibrations at Indiana locations, additional research using more extensive calibration data may enhance APSIM robustness.
publishDate 2017
dc.date.none.fl_str_mv 2017
2018-09-28T15:14:41Z
2018-09-28T15:14:41Z
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12123/3508
https://onlinelibrary.wiley.com/doi/full/10.1111/gcbb.12384
1757-1707
https://doi.org/10.1111/gcbb.12384
url http://hdl.handle.net/20.500.12123/3508
https://onlinelibrary.wiley.com/doi/full/10.1111/gcbb.12384
https://doi.org/10.1111/gcbb.12384
identifier_str_mv 1757-1707
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
eu_rights_str_mv restrictedAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Wiley
publisher.none.fl_str_mv Wiley
dc.source.none.fl_str_mv Global change biology Bioenergy 9 (4) : 796–816. (April 2017)
reponame:INTA Digital (INTA)
instname:Instituto Nacional de Tecnología Agropecuaria
reponame_str INTA Digital (INTA)
collection INTA Digital (INTA)
instname_str Instituto Nacional de Tecnología Agropecuaria
repository.name.fl_str_mv INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria
repository.mail.fl_str_mv tripaldi.nicolas@inta.gob.ar
_version_ 1844619126451994624
score 12.558318