Reclassification of Theileria annae as Babesia vulpes sp. nov.

Autores
Baneth, Gad; Florin-Christensen, Mónica; Cardoso, Luís; Schnittger, Leonhard
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Background: Theileria annae is a tick-transmitted small piroplasmid that infects dogs and foxes in North America and Europe. Due to disagreement on its placement in the Theileria or Babesia genera, several synonyms have been used for this parasite, including Babesia Spanish dog isolate, Babesia microti-like, Babesia (Theileria) annae, and Babesia cf. microti. Infections by this parasite cause anemia, thrombocytopenia, and azotemia in dogs but are mostly subclinical in red foxes (Vulpes vulpes). Furthermore, high infection rates have been detected among red fox populations in distant regions strongly suggesting that these canines act as the parasite’s natural host. This study aims to reassess and harmonize the phylogenetic placement and binomen of T. annae within the order Piroplasmida. Methods: Four molecular phylogenetic trees were constructed using a maximum likelihood algorithm based on DNA alignments of: (i) near-complete 18S rRNA gene sequences (n = 76 and n = 93), (ii) near-complete and incomplete 18S rRNA gene sequences (n = 92), and (iii) tubulin-beta gene sequences (n = 32) from B. microti and B. microti-related parasites including those detected in dogs and foxes. Results: All phylogenetic trees demonstrate that T. annae and its synonyms are not Theileria parasites but are most closely related with B. microti. The phylogenetic tree based on the 18S rRNA gene forms two separate branches with high bootstrap value, of which one branch corresponds to Babesia species infecting rodents, humans, and macaques, while the other corresponds to species exclusively infecting carnivores. Within the carnivore group, T. annae and its synonyms from distant regions segregate into a single clade with a highly significant bootstrap value corroborating their separate species identity. Conclusion: Phylogenetic analysis clearly shows that T. annae and its synonyms do not pertain to Theileria and can be clearly defined as a separate species. Based on the facts that T. annae and its synonyms have not been shown to have a leukocyte stage, as expected in Theileria, do not infect humans and rodents as B. microti, and cluster phylogenetically as a separate species, this study proposes to name this parasite Babesia vulpes sp. nov., after its natural host, the red fox V. vulpes.
Fil: Baneth, Gad. Hebrew University. Koret School of Veterinary Medicine; Israel
Fil: Florin-Christensen, Monica. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Patobiología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Cardoso, Luís. University of Trás-os-Montes e Alto Douro. Department of Veterinary Sciences. School of Agrarian and Veterinary Sciences; Portugal
Fil: Schnittger, Leonhard. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Patobiología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fuente
Parasites & Vectors 8 : 207 (2015)
Materia
Theileria
Babesia
Parásitos
Parasites
Theileria Annae
Babesia Vulpes
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
INTA Digital (INTA)
Institución
Instituto Nacional de Tecnología Agropecuaria
OAI Identificador
oai:localhost:20.500.12123/1754

id INTADig_26fbd287b81df3ac250342eeae50d7dc
oai_identifier_str oai:localhost:20.500.12123/1754
network_acronym_str INTADig
repository_id_str l
network_name_str INTA Digital (INTA)
spelling Reclassification of Theileria annae as Babesia vulpes sp. nov.Baneth, GadFlorin-Christensen, MónicaCardoso, LuísSchnittger, LeonhardTheileriaBabesiaParásitosParasitesTheileria AnnaeBabesia VulpesBackground: Theileria annae is a tick-transmitted small piroplasmid that infects dogs and foxes in North America and Europe. Due to disagreement on its placement in the Theileria or Babesia genera, several synonyms have been used for this parasite, including Babesia Spanish dog isolate, Babesia microti-like, Babesia (Theileria) annae, and Babesia cf. microti. Infections by this parasite cause anemia, thrombocytopenia, and azotemia in dogs but are mostly subclinical in red foxes (Vulpes vulpes). Furthermore, high infection rates have been detected among red fox populations in distant regions strongly suggesting that these canines act as the parasite’s natural host. This study aims to reassess and harmonize the phylogenetic placement and binomen of T. annae within the order Piroplasmida. Methods: Four molecular phylogenetic trees were constructed using a maximum likelihood algorithm based on DNA alignments of: (i) near-complete 18S rRNA gene sequences (n = 76 and n = 93), (ii) near-complete and incomplete 18S rRNA gene sequences (n = 92), and (iii) tubulin-beta gene sequences (n = 32) from B. microti and B. microti-related parasites including those detected in dogs and foxes. Results: All phylogenetic trees demonstrate that T. annae and its synonyms are not Theileria parasites but are most closely related with B. microti. The phylogenetic tree based on the 18S rRNA gene forms two separate branches with high bootstrap value, of which one branch corresponds to Babesia species infecting rodents, humans, and macaques, while the other corresponds to species exclusively infecting carnivores. Within the carnivore group, T. annae and its synonyms from distant regions segregate into a single clade with a highly significant bootstrap value corroborating their separate species identity. Conclusion: Phylogenetic analysis clearly shows that T. annae and its synonyms do not pertain to Theileria and can be clearly defined as a separate species. Based on the facts that T. annae and its synonyms have not been shown to have a leukocyte stage, as expected in Theileria, do not infect humans and rodents as B. microti, and cluster phylogenetically as a separate species, this study proposes to name this parasite Babesia vulpes sp. nov., after its natural host, the red fox V. vulpes.Fil: Baneth, Gad. Hebrew University. Koret School of Veterinary Medicine; IsraelFil: Florin-Christensen, Monica. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Patobiología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Cardoso, Luís. University of Trás-os-Montes e Alto Douro. Department of Veterinary Sciences. School of Agrarian and Veterinary Sciences; PortugalFil: Schnittger, Leonhard. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Patobiología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina2017-11-13T13:18:09Z2017-11-13T13:18:09Z2015-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12123/1754https://parasitesandvectors.biomedcentral.com/track/pdf/10.1186/s13071-015-0830-5?site=parasitesandvectors.biomedcentral.com1756-3305https://doi.org/10.1186/s13071-015-0830-5Parasites & Vectors 8 : 207 (2015)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)2025-09-04T09:47:07Zoai:localhost:20.500.12123/1754instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-09-04 09:47:08.293INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse
dc.title.none.fl_str_mv Reclassification of Theileria annae as Babesia vulpes sp. nov.
title Reclassification of Theileria annae as Babesia vulpes sp. nov.
spellingShingle Reclassification of Theileria annae as Babesia vulpes sp. nov.
Baneth, Gad
Theileria
Babesia
Parásitos
Parasites
Theileria Annae
Babesia Vulpes
title_short Reclassification of Theileria annae as Babesia vulpes sp. nov.
title_full Reclassification of Theileria annae as Babesia vulpes sp. nov.
title_fullStr Reclassification of Theileria annae as Babesia vulpes sp. nov.
title_full_unstemmed Reclassification of Theileria annae as Babesia vulpes sp. nov.
title_sort Reclassification of Theileria annae as Babesia vulpes sp. nov.
dc.creator.none.fl_str_mv Baneth, Gad
Florin-Christensen, Mónica
Cardoso, Luís
Schnittger, Leonhard
author Baneth, Gad
author_facet Baneth, Gad
Florin-Christensen, Mónica
Cardoso, Luís
Schnittger, Leonhard
author_role author
author2 Florin-Christensen, Mónica
Cardoso, Luís
Schnittger, Leonhard
author2_role author
author
author
dc.subject.none.fl_str_mv Theileria
Babesia
Parásitos
Parasites
Theileria Annae
Babesia Vulpes
topic Theileria
Babesia
Parásitos
Parasites
Theileria Annae
Babesia Vulpes
dc.description.none.fl_txt_mv Background: Theileria annae is a tick-transmitted small piroplasmid that infects dogs and foxes in North America and Europe. Due to disagreement on its placement in the Theileria or Babesia genera, several synonyms have been used for this parasite, including Babesia Spanish dog isolate, Babesia microti-like, Babesia (Theileria) annae, and Babesia cf. microti. Infections by this parasite cause anemia, thrombocytopenia, and azotemia in dogs but are mostly subclinical in red foxes (Vulpes vulpes). Furthermore, high infection rates have been detected among red fox populations in distant regions strongly suggesting that these canines act as the parasite’s natural host. This study aims to reassess and harmonize the phylogenetic placement and binomen of T. annae within the order Piroplasmida. Methods: Four molecular phylogenetic trees were constructed using a maximum likelihood algorithm based on DNA alignments of: (i) near-complete 18S rRNA gene sequences (n = 76 and n = 93), (ii) near-complete and incomplete 18S rRNA gene sequences (n = 92), and (iii) tubulin-beta gene sequences (n = 32) from B. microti and B. microti-related parasites including those detected in dogs and foxes. Results: All phylogenetic trees demonstrate that T. annae and its synonyms are not Theileria parasites but are most closely related with B. microti. The phylogenetic tree based on the 18S rRNA gene forms two separate branches with high bootstrap value, of which one branch corresponds to Babesia species infecting rodents, humans, and macaques, while the other corresponds to species exclusively infecting carnivores. Within the carnivore group, T. annae and its synonyms from distant regions segregate into a single clade with a highly significant bootstrap value corroborating their separate species identity. Conclusion: Phylogenetic analysis clearly shows that T. annae and its synonyms do not pertain to Theileria and can be clearly defined as a separate species. Based on the facts that T. annae and its synonyms have not been shown to have a leukocyte stage, as expected in Theileria, do not infect humans and rodents as B. microti, and cluster phylogenetically as a separate species, this study proposes to name this parasite Babesia vulpes sp. nov., after its natural host, the red fox V. vulpes.
Fil: Baneth, Gad. Hebrew University. Koret School of Veterinary Medicine; Israel
Fil: Florin-Christensen, Monica. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Patobiología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Cardoso, Luís. University of Trás-os-Montes e Alto Douro. Department of Veterinary Sciences. School of Agrarian and Veterinary Sciences; Portugal
Fil: Schnittger, Leonhard. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Patobiología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description Background: Theileria annae is a tick-transmitted small piroplasmid that infects dogs and foxes in North America and Europe. Due to disagreement on its placement in the Theileria or Babesia genera, several synonyms have been used for this parasite, including Babesia Spanish dog isolate, Babesia microti-like, Babesia (Theileria) annae, and Babesia cf. microti. Infections by this parasite cause anemia, thrombocytopenia, and azotemia in dogs but are mostly subclinical in red foxes (Vulpes vulpes). Furthermore, high infection rates have been detected among red fox populations in distant regions strongly suggesting that these canines act as the parasite’s natural host. This study aims to reassess and harmonize the phylogenetic placement and binomen of T. annae within the order Piroplasmida. Methods: Four molecular phylogenetic trees were constructed using a maximum likelihood algorithm based on DNA alignments of: (i) near-complete 18S rRNA gene sequences (n = 76 and n = 93), (ii) near-complete and incomplete 18S rRNA gene sequences (n = 92), and (iii) tubulin-beta gene sequences (n = 32) from B. microti and B. microti-related parasites including those detected in dogs and foxes. Results: All phylogenetic trees demonstrate that T. annae and its synonyms are not Theileria parasites but are most closely related with B. microti. The phylogenetic tree based on the 18S rRNA gene forms two separate branches with high bootstrap value, of which one branch corresponds to Babesia species infecting rodents, humans, and macaques, while the other corresponds to species exclusively infecting carnivores. Within the carnivore group, T. annae and its synonyms from distant regions segregate into a single clade with a highly significant bootstrap value corroborating their separate species identity. Conclusion: Phylogenetic analysis clearly shows that T. annae and its synonyms do not pertain to Theileria and can be clearly defined as a separate species. Based on the facts that T. annae and its synonyms have not been shown to have a leukocyte stage, as expected in Theileria, do not infect humans and rodents as B. microti, and cluster phylogenetically as a separate species, this study proposes to name this parasite Babesia vulpes sp. nov., after its natural host, the red fox V. vulpes.
publishDate 2015
dc.date.none.fl_str_mv 2015-04
2017-11-13T13:18:09Z
2017-11-13T13:18:09Z
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12123/1754
https://parasitesandvectors.biomedcentral.com/track/pdf/10.1186/s13071-015-0830-5?site=parasitesandvectors.biomedcentral.com
1756-3305
https://doi.org/10.1186/s13071-015-0830-5
url http://hdl.handle.net/20.500.12123/1754
https://parasitesandvectors.biomedcentral.com/track/pdf/10.1186/s13071-015-0830-5?site=parasitesandvectors.biomedcentral.com
https://doi.org/10.1186/s13071-015-0830-5
identifier_str_mv 1756-3305
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv Parasites & Vectors 8 : 207 (2015)
reponame:INTA Digital (INTA)
instname:Instituto Nacional de Tecnología Agropecuaria
reponame_str INTA Digital (INTA)
collection INTA Digital (INTA)
instname_str Instituto Nacional de Tecnología Agropecuaria
repository.name.fl_str_mv INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria
repository.mail.fl_str_mv tripaldi.nicolas@inta.gob.ar
_version_ 1842341352092729344
score 12.623145