Multimodal data integration to model, predict, and understand changes in plant biodiversity : a systematic review
- Autores
- Martinez, Emilce Soledad; Tejada-Gutiérrez, Eva; Sorribas, Albert; Mateo-Fornes, Jordi; Solsona, Francesc; Defacio, Raquel Alicia; Alves, Rui
- Año de publicación
- 2025
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The integration of multimodal data to analyze, model, and predict changes in plant biodiversity is critical for addressing global conservation challenges. This systematic review examines the current landscape of plant biodiversity data, focusing on the identification, classification, and evaluation of key open-access data sources and integration methodologies. We highlight the strengths and limitations of major biodiversity platforms, emphasizing their contributions to species occurrence, trait data, taxonomic checklists, and environmental variables. The review also explores computational tools for data integration. We describe and analyze the role of Darwin Core standards in data standardization, harmonization, and interoperability, highlighting the importance of tools such as Species Distribution Models and machine learning. Additionally, we assess the tools available for multimodal data integration and analysis of the effects of environmental drivers (e.g., temperature, precipitation, topography) on biodiversity. We find significant advancements in biodiversity informatics over the last decades. Still, challenges persist in achieving interoperability across datasets, in addressing spatial and temporal biases, and in integrating remote sensing with in situ observations. By identifying both the challenges and emerging solutions, this review contributes to advancing biodiversity monitoring strategies, aligning with global conservation goals outlined by the Convention on Biological Diversity and the United Nations Sustainable Development Goal 15. Ultimately, the findings underscore the importance of harmonized data integration frameworks to enhance predictive modeling capabilities and inform effective conservation policies.
EEA Pergamino
Fil: Martinez, Emilce. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Pergamino. Laboratorio de Semillas. Banco Activo de Germoplasma; Argentina
Fil: Martinez, Emilce. Universidad de Lleida. Facultad de Medicina. Departamento de Ciencias Médicas Básicas. Grupo de Biología de Sistemas; España
Fil: Tejada-Gutiérrez, Eva. Universidad de Lleida. Facultad de Medicina. Departamento de Ciencias Médicas Básicas. Grupo de Biología de Sistemas; España
Fil: Sorribas, Albert. Universidad de Lleida. Facultad de Medicina. Departamento de Ciencias Médicas Básicas. Grupo de Biología de Sistemas; España
Fil: Mateo-Fornes, Jordi. Universidad de Lleida. Departamento de Ingeniería Informática y Diseño Digital; España
Fil: Solsona, Francesc. Universidad de Lleida. Departamento de Ingeniería Informática y Diseño Digital; España
Fil: Defacio, Raquel. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Pergamino. Recursos Genéticos; Argentina
Fil: Alves, Rui. Universidad de Lleida. Facultad de Medicina. Departamento de Ciencias Médicas Básicas. Grupo de Biología de Sistemas; España - Fuente
- Ecological Informatics 92 : 103485. (December 2025)
- Materia
-
Biodiversidad
Base de Datos
Integración
Ecología
Biodiversity
Databases
Integration
Ecology
Multimodal Data
Data Integration
Big Data
Smart Data
Mathematical Ecology - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
.jpg)
- Institución
- Instituto Nacional de Tecnología Agropecuaria
- OAI Identificador
- oai:localhost:20.500.12123/24480
Ver los metadatos del registro completo
| id |
INTADig_17d7e8280d8533c12355e698cfea806b |
|---|---|
| oai_identifier_str |
oai:localhost:20.500.12123/24480 |
| network_acronym_str |
INTADig |
| repository_id_str |
l |
| network_name_str |
INTA Digital (INTA) |
| spelling |
Multimodal data integration to model, predict, and understand changes in plant biodiversity : a systematic reviewMartinez, Emilce SoledadTejada-Gutiérrez, EvaSorribas, AlbertMateo-Fornes, JordiSolsona, FrancescDefacio, Raquel AliciaAlves, RuiBiodiversidadBase de DatosIntegraciónEcologíaBiodiversityDatabasesIntegrationEcologyMultimodal DataData IntegrationBig DataSmart DataMathematical EcologyThe integration of multimodal data to analyze, model, and predict changes in plant biodiversity is critical for addressing global conservation challenges. This systematic review examines the current landscape of plant biodiversity data, focusing on the identification, classification, and evaluation of key open-access data sources and integration methodologies. We highlight the strengths and limitations of major biodiversity platforms, emphasizing their contributions to species occurrence, trait data, taxonomic checklists, and environmental variables. The review also explores computational tools for data integration. We describe and analyze the role of Darwin Core standards in data standardization, harmonization, and interoperability, highlighting the importance of tools such as Species Distribution Models and machine learning. Additionally, we assess the tools available for multimodal data integration and analysis of the effects of environmental drivers (e.g., temperature, precipitation, topography) on biodiversity. We find significant advancements in biodiversity informatics over the last decades. Still, challenges persist in achieving interoperability across datasets, in addressing spatial and temporal biases, and in integrating remote sensing with in situ observations. By identifying both the challenges and emerging solutions, this review contributes to advancing biodiversity monitoring strategies, aligning with global conservation goals outlined by the Convention on Biological Diversity and the United Nations Sustainable Development Goal 15. Ultimately, the findings underscore the importance of harmonized data integration frameworks to enhance predictive modeling capabilities and inform effective conservation policies.EEA PergaminoFil: Martinez, Emilce. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Pergamino. Laboratorio de Semillas. Banco Activo de Germoplasma; ArgentinaFil: Martinez, Emilce. Universidad de Lleida. Facultad de Medicina. Departamento de Ciencias Médicas Básicas. Grupo de Biología de Sistemas; EspañaFil: Tejada-Gutiérrez, Eva. Universidad de Lleida. Facultad de Medicina. Departamento de Ciencias Médicas Básicas. Grupo de Biología de Sistemas; EspañaFil: Sorribas, Albert. Universidad de Lleida. Facultad de Medicina. Departamento de Ciencias Médicas Básicas. Grupo de Biología de Sistemas; EspañaFil: Mateo-Fornes, Jordi. Universidad de Lleida. Departamento de Ingeniería Informática y Diseño Digital; EspañaFil: Solsona, Francesc. Universidad de Lleida. Departamento de Ingeniería Informática y Diseño Digital; EspañaFil: Defacio, Raquel. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Pergamino. Recursos Genéticos; ArgentinaFil: Alves, Rui. Universidad de Lleida. Facultad de Medicina. Departamento de Ciencias Médicas Básicas. Grupo de Biología de Sistemas; EspañaElsevier2025-11-06T10:37:29Z2025-11-06T10:37:29Z2025-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12123/24480https://www.sciencedirect.com/science/article/pii/S15749541250049471574-9541https://doi.org/10.1016/j.ecoinf.2025.103485Ecological Informatics 92 : 103485. (December 2025)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)2025-11-13T08:48:48Zoai:localhost:20.500.12123/24480instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-11-13 08:48:48.596INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse |
| dc.title.none.fl_str_mv |
Multimodal data integration to model, predict, and understand changes in plant biodiversity : a systematic review |
| title |
Multimodal data integration to model, predict, and understand changes in plant biodiversity : a systematic review |
| spellingShingle |
Multimodal data integration to model, predict, and understand changes in plant biodiversity : a systematic review Martinez, Emilce Soledad Biodiversidad Base de Datos Integración Ecología Biodiversity Databases Integration Ecology Multimodal Data Data Integration Big Data Smart Data Mathematical Ecology |
| title_short |
Multimodal data integration to model, predict, and understand changes in plant biodiversity : a systematic review |
| title_full |
Multimodal data integration to model, predict, and understand changes in plant biodiversity : a systematic review |
| title_fullStr |
Multimodal data integration to model, predict, and understand changes in plant biodiversity : a systematic review |
| title_full_unstemmed |
Multimodal data integration to model, predict, and understand changes in plant biodiversity : a systematic review |
| title_sort |
Multimodal data integration to model, predict, and understand changes in plant biodiversity : a systematic review |
| dc.creator.none.fl_str_mv |
Martinez, Emilce Soledad Tejada-Gutiérrez, Eva Sorribas, Albert Mateo-Fornes, Jordi Solsona, Francesc Defacio, Raquel Alicia Alves, Rui |
| author |
Martinez, Emilce Soledad |
| author_facet |
Martinez, Emilce Soledad Tejada-Gutiérrez, Eva Sorribas, Albert Mateo-Fornes, Jordi Solsona, Francesc Defacio, Raquel Alicia Alves, Rui |
| author_role |
author |
| author2 |
Tejada-Gutiérrez, Eva Sorribas, Albert Mateo-Fornes, Jordi Solsona, Francesc Defacio, Raquel Alicia Alves, Rui |
| author2_role |
author author author author author author |
| dc.subject.none.fl_str_mv |
Biodiversidad Base de Datos Integración Ecología Biodiversity Databases Integration Ecology Multimodal Data Data Integration Big Data Smart Data Mathematical Ecology |
| topic |
Biodiversidad Base de Datos Integración Ecología Biodiversity Databases Integration Ecology Multimodal Data Data Integration Big Data Smart Data Mathematical Ecology |
| dc.description.none.fl_txt_mv |
The integration of multimodal data to analyze, model, and predict changes in plant biodiversity is critical for addressing global conservation challenges. This systematic review examines the current landscape of plant biodiversity data, focusing on the identification, classification, and evaluation of key open-access data sources and integration methodologies. We highlight the strengths and limitations of major biodiversity platforms, emphasizing their contributions to species occurrence, trait data, taxonomic checklists, and environmental variables. The review also explores computational tools for data integration. We describe and analyze the role of Darwin Core standards in data standardization, harmonization, and interoperability, highlighting the importance of tools such as Species Distribution Models and machine learning. Additionally, we assess the tools available for multimodal data integration and analysis of the effects of environmental drivers (e.g., temperature, precipitation, topography) on biodiversity. We find significant advancements in biodiversity informatics over the last decades. Still, challenges persist in achieving interoperability across datasets, in addressing spatial and temporal biases, and in integrating remote sensing with in situ observations. By identifying both the challenges and emerging solutions, this review contributes to advancing biodiversity monitoring strategies, aligning with global conservation goals outlined by the Convention on Biological Diversity and the United Nations Sustainable Development Goal 15. Ultimately, the findings underscore the importance of harmonized data integration frameworks to enhance predictive modeling capabilities and inform effective conservation policies. EEA Pergamino Fil: Martinez, Emilce. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Pergamino. Laboratorio de Semillas. Banco Activo de Germoplasma; Argentina Fil: Martinez, Emilce. Universidad de Lleida. Facultad de Medicina. Departamento de Ciencias Médicas Básicas. Grupo de Biología de Sistemas; España Fil: Tejada-Gutiérrez, Eva. Universidad de Lleida. Facultad de Medicina. Departamento de Ciencias Médicas Básicas. Grupo de Biología de Sistemas; España Fil: Sorribas, Albert. Universidad de Lleida. Facultad de Medicina. Departamento de Ciencias Médicas Básicas. Grupo de Biología de Sistemas; España Fil: Mateo-Fornes, Jordi. Universidad de Lleida. Departamento de Ingeniería Informática y Diseño Digital; España Fil: Solsona, Francesc. Universidad de Lleida. Departamento de Ingeniería Informática y Diseño Digital; España Fil: Defacio, Raquel. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Pergamino. Recursos Genéticos; Argentina Fil: Alves, Rui. Universidad de Lleida. Facultad de Medicina. Departamento de Ciencias Médicas Básicas. Grupo de Biología de Sistemas; España |
| description |
The integration of multimodal data to analyze, model, and predict changes in plant biodiversity is critical for addressing global conservation challenges. This systematic review examines the current landscape of plant biodiversity data, focusing on the identification, classification, and evaluation of key open-access data sources and integration methodologies. We highlight the strengths and limitations of major biodiversity platforms, emphasizing their contributions to species occurrence, trait data, taxonomic checklists, and environmental variables. The review also explores computational tools for data integration. We describe and analyze the role of Darwin Core standards in data standardization, harmonization, and interoperability, highlighting the importance of tools such as Species Distribution Models and machine learning. Additionally, we assess the tools available for multimodal data integration and analysis of the effects of environmental drivers (e.g., temperature, precipitation, topography) on biodiversity. We find significant advancements in biodiversity informatics over the last decades. Still, challenges persist in achieving interoperability across datasets, in addressing spatial and temporal biases, and in integrating remote sensing with in situ observations. By identifying both the challenges and emerging solutions, this review contributes to advancing biodiversity monitoring strategies, aligning with global conservation goals outlined by the Convention on Biological Diversity and the United Nations Sustainable Development Goal 15. Ultimately, the findings underscore the importance of harmonized data integration frameworks to enhance predictive modeling capabilities and inform effective conservation policies. |
| publishDate |
2025 |
| dc.date.none.fl_str_mv |
2025-11-06T10:37:29Z 2025-11-06T10:37:29Z 2025-12 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12123/24480 https://www.sciencedirect.com/science/article/pii/S1574954125004947 1574-9541 https://doi.org/10.1016/j.ecoinf.2025.103485 |
| url |
http://hdl.handle.net/20.500.12123/24480 https://www.sciencedirect.com/science/article/pii/S1574954125004947 https://doi.org/10.1016/j.ecoinf.2025.103485 |
| identifier_str_mv |
1574-9541 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Elsevier |
| publisher.none.fl_str_mv |
Elsevier |
| dc.source.none.fl_str_mv |
Ecological Informatics 92 : 103485. (December 2025) reponame:INTA Digital (INTA) instname:Instituto Nacional de Tecnología Agropecuaria |
| reponame_str |
INTA Digital (INTA) |
| collection |
INTA Digital (INTA) |
| instname_str |
Instituto Nacional de Tecnología Agropecuaria |
| repository.name.fl_str_mv |
INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria |
| repository.mail.fl_str_mv |
tripaldi.nicolas@inta.gob.ar |
| _version_ |
1848680557562560512 |
| score |
13.24909 |