Revisiting the relationship between nitrogen nutrition index and yield across major species

Autores
Rodriguez, Ignacio; Lacasa, Josefina; van Versendaal, Emmanuela; Lemaire, Gilles; Belanger, Gilles; Jégo, Guillaume; Sandaña, Patricio; Soratto, Rogério; Djalovic, Ivica; Ata-Ul-Karim, Syed Tahir; Reussi Calvo, Nahuel Ignacio; Giletto, Claudia Marcela; Zhao, Ben; Ciampitti, Ignacio
Año de publicación
2024
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Crop nitrogen (N) fertilization diagnoses via the N nutrition index (NNI)-yield relationship have been tested for several crop species, but a cross-species comparison of that relationship has not been performed yet. This study aimed to perform a cross-species comparison of the relationship between NNI and yield with emphasis on the yield sensitivity to N deficiency, slope of the models. Additionally, we conducted an evaluation to determine the best NNI sampling moment to predict relative yield, with focus on major grain crops. Based on a recently published global dataset to parametrize critical dilution curves, we calculated integrated NNI, instantaneous NNI, relative yield, and relative shoot biomass for annual ryegrass, tall fescue, maize, potato, rice, and wheat. We obtained 238 observations to fit integrated NNI-relative yield linear mixed-effects models and 1606 observations to fit instantaneous NNI-relative yield models. Subsequently, we performed a sensitivity analysis to determine the best NNI sampling moment to predict relative yield, with focus on major grain crops (maize, rice, and wheat). Our results show that there was low inter-species variation of sensitivity to N deficiency, i.e., the slope of the relationship between relative yield and integrated NNI. For grain crops, instantaneous NNI around anthesis demonstrated a better predictive capability for relative yield, outperforming other vegetative stages. This finding contributed to improving the understanding of the association between relative yield and NNI with implications for breeding programs, nutrient management practices, and crop modelling. Most importantly, this study is a contribution to improving the N nutrition diagnosis for several crop species, by using an integral, comparative approach.
EEA Balcarce
Fil: Rodriguez, Ignacio. Kansas State University. Department of Agronomy; Estados Unidos.
Fil: Rodriguez, Ignacio. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina.
Fil: Rodriguez, Ignacio. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina.
Fil: Lacasa, Josefina. Kansas State University. Department of Agronomy; Estados Unidos.
Fil: van Versendaal, Emmanuela. Kansas State University. Department of Agronomy; Estados Unidos.
Fil: Lemaire, Gilles. Institut National de la Recherche Agronomique; Francia.
Fil: Belanger, Gilles. Agriculture and Agri-Food Canada, Quebec Research and Development Centre; Canadá.
Fil: Jégo, Guillaume. Agriculture and Agri-Food Canada, Quebec Research and Development Centre; Canadá.
Fil: Sandaña, Patricio. Universidad Austral de Chile. Institute of Plant Production and Protection; Chile.
Fil: Soratto, Rogério. São Paulo State University. College of Agricultural Sciences; Brasil.
Fil: Djalovic, Ivica. National Institute of the Republic of Serbia. Institute of Field and Vegetable Crops; Serbia.
Fil: Ata-Ul-Karim, Syed Tahir. The Pennsylvania State University. Department of Plant Science; Estados Unidos.
Fil: Reussi Calvo, Nahuel Ignacio. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina.
Fil: Reussi Calvo, Nahuel Ignacio. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina.
Fil: Giletto, Claudia. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina.
Fil: Giletto, Claudia. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina.
Fil: Zhao, Ben. Chinese Academy of Agricultural Sciences. Ministry of Agriculture, Farmland Irrigation Research Institute; China
Fil: Ciampitti, Ignacio. Kansas State University. Department of Agronomy; Estados Unidos.
Fuente
European Journal of Agronomy 154 : 127079 (March 2024)
Materia
Nitrógeno
Rendimiento de Cultivos
Aplicación de Abonos
Nutrición de las Plantas
Nitrogen
Crop Yield
Fertilizer Application
Plant Nutrition
Nivel de accesibilidad
acceso restringido
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
INTA Digital (INTA)
Institución
Instituto Nacional de Tecnología Agropecuaria
OAI Identificador
oai:localhost:20.500.12123/17009

id INTADig_16627d7e8aa7a50c4110748df111f45d
oai_identifier_str oai:localhost:20.500.12123/17009
network_acronym_str INTADig
repository_id_str l
network_name_str INTA Digital (INTA)
spelling Revisiting the relationship between nitrogen nutrition index and yield across major speciesRodriguez, IgnacioLacasa, Josefinavan Versendaal, EmmanuelaLemaire, GillesBelanger, GillesJégo, GuillaumeSandaña, PatricioSoratto, RogérioDjalovic, IvicaAta-Ul-Karim, Syed TahirReussi Calvo, Nahuel IgnacioGiletto, Claudia MarcelaZhao, BenCiampitti, IgnacioNitrógenoRendimiento de CultivosAplicación de AbonosNutrición de las PlantasNitrogenCrop YieldFertilizer ApplicationPlant NutritionCrop nitrogen (N) fertilization diagnoses via the N nutrition index (NNI)-yield relationship have been tested for several crop species, but a cross-species comparison of that relationship has not been performed yet. This study aimed to perform a cross-species comparison of the relationship between NNI and yield with emphasis on the yield sensitivity to N deficiency, slope of the models. Additionally, we conducted an evaluation to determine the best NNI sampling moment to predict relative yield, with focus on major grain crops. Based on a recently published global dataset to parametrize critical dilution curves, we calculated integrated NNI, instantaneous NNI, relative yield, and relative shoot biomass for annual ryegrass, tall fescue, maize, potato, rice, and wheat. We obtained 238 observations to fit integrated NNI-relative yield linear mixed-effects models and 1606 observations to fit instantaneous NNI-relative yield models. Subsequently, we performed a sensitivity analysis to determine the best NNI sampling moment to predict relative yield, with focus on major grain crops (maize, rice, and wheat). Our results show that there was low inter-species variation of sensitivity to N deficiency, i.e., the slope of the relationship between relative yield and integrated NNI. For grain crops, instantaneous NNI around anthesis demonstrated a better predictive capability for relative yield, outperforming other vegetative stages. This finding contributed to improving the understanding of the association between relative yield and NNI with implications for breeding programs, nutrient management practices, and crop modelling. Most importantly, this study is a contribution to improving the N nutrition diagnosis for several crop species, by using an integral, comparative approach.EEA BalcarceFil: Rodriguez, Ignacio. Kansas State University. Department of Agronomy; Estados Unidos.Fil: Rodriguez, Ignacio. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina.Fil: Rodriguez, Ignacio. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina.Fil: Lacasa, Josefina. Kansas State University. Department of Agronomy; Estados Unidos.Fil: van Versendaal, Emmanuela. Kansas State University. Department of Agronomy; Estados Unidos.Fil: Lemaire, Gilles. Institut National de la Recherche Agronomique; Francia.Fil: Belanger, Gilles. Agriculture and Agri-Food Canada, Quebec Research and Development Centre; Canadá.Fil: Jégo, Guillaume. Agriculture and Agri-Food Canada, Quebec Research and Development Centre; Canadá.Fil: Sandaña, Patricio. Universidad Austral de Chile. Institute of Plant Production and Protection; Chile.Fil: Soratto, Rogério. São Paulo State University. College of Agricultural Sciences; Brasil.Fil: Djalovic, Ivica. National Institute of the Republic of Serbia. Institute of Field and Vegetable Crops; Serbia.Fil: Ata-Ul-Karim, Syed Tahir. The Pennsylvania State University. Department of Plant Science; Estados Unidos.Fil: Reussi Calvo, Nahuel Ignacio. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina.Fil: Reussi Calvo, Nahuel Ignacio. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina.Fil: Giletto, Claudia. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina.Fil: Giletto, Claudia. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina.Fil: Zhao, Ben. Chinese Academy of Agricultural Sciences. Ministry of Agriculture, Farmland Irrigation Research Institute; ChinaFil: Ciampitti, Ignacio. Kansas State University. Department of Agronomy; Estados Unidos.Elsevier2024-03-12T18:04:53Z2024-03-12T18:04:53Z2024-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12123/17009https://www.sciencedirect.com/science/article/pii/S11610301230034771161-0301 (Print)1873-7331 (Online)https://doi.org/10.1016/j.eja.2023.127079European Journal of Agronomy 154 : 127079 (March 2024)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repo/semantics/restrictedAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)2025-10-16T09:31:32Zoai:localhost:20.500.12123/17009instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-10-16 09:31:32.327INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse
dc.title.none.fl_str_mv Revisiting the relationship between nitrogen nutrition index and yield across major species
title Revisiting the relationship between nitrogen nutrition index and yield across major species
spellingShingle Revisiting the relationship between nitrogen nutrition index and yield across major species
Rodriguez, Ignacio
Nitrógeno
Rendimiento de Cultivos
Aplicación de Abonos
Nutrición de las Plantas
Nitrogen
Crop Yield
Fertilizer Application
Plant Nutrition
title_short Revisiting the relationship between nitrogen nutrition index and yield across major species
title_full Revisiting the relationship between nitrogen nutrition index and yield across major species
title_fullStr Revisiting the relationship between nitrogen nutrition index and yield across major species
title_full_unstemmed Revisiting the relationship between nitrogen nutrition index and yield across major species
title_sort Revisiting the relationship between nitrogen nutrition index and yield across major species
dc.creator.none.fl_str_mv Rodriguez, Ignacio
Lacasa, Josefina
van Versendaal, Emmanuela
Lemaire, Gilles
Belanger, Gilles
Jégo, Guillaume
Sandaña, Patricio
Soratto, Rogério
Djalovic, Ivica
Ata-Ul-Karim, Syed Tahir
Reussi Calvo, Nahuel Ignacio
Giletto, Claudia Marcela
Zhao, Ben
Ciampitti, Ignacio
author Rodriguez, Ignacio
author_facet Rodriguez, Ignacio
Lacasa, Josefina
van Versendaal, Emmanuela
Lemaire, Gilles
Belanger, Gilles
Jégo, Guillaume
Sandaña, Patricio
Soratto, Rogério
Djalovic, Ivica
Ata-Ul-Karim, Syed Tahir
Reussi Calvo, Nahuel Ignacio
Giletto, Claudia Marcela
Zhao, Ben
Ciampitti, Ignacio
author_role author
author2 Lacasa, Josefina
van Versendaal, Emmanuela
Lemaire, Gilles
Belanger, Gilles
Jégo, Guillaume
Sandaña, Patricio
Soratto, Rogério
Djalovic, Ivica
Ata-Ul-Karim, Syed Tahir
Reussi Calvo, Nahuel Ignacio
Giletto, Claudia Marcela
Zhao, Ben
Ciampitti, Ignacio
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Nitrógeno
Rendimiento de Cultivos
Aplicación de Abonos
Nutrición de las Plantas
Nitrogen
Crop Yield
Fertilizer Application
Plant Nutrition
topic Nitrógeno
Rendimiento de Cultivos
Aplicación de Abonos
Nutrición de las Plantas
Nitrogen
Crop Yield
Fertilizer Application
Plant Nutrition
dc.description.none.fl_txt_mv Crop nitrogen (N) fertilization diagnoses via the N nutrition index (NNI)-yield relationship have been tested for several crop species, but a cross-species comparison of that relationship has not been performed yet. This study aimed to perform a cross-species comparison of the relationship between NNI and yield with emphasis on the yield sensitivity to N deficiency, slope of the models. Additionally, we conducted an evaluation to determine the best NNI sampling moment to predict relative yield, with focus on major grain crops. Based on a recently published global dataset to parametrize critical dilution curves, we calculated integrated NNI, instantaneous NNI, relative yield, and relative shoot biomass for annual ryegrass, tall fescue, maize, potato, rice, and wheat. We obtained 238 observations to fit integrated NNI-relative yield linear mixed-effects models and 1606 observations to fit instantaneous NNI-relative yield models. Subsequently, we performed a sensitivity analysis to determine the best NNI sampling moment to predict relative yield, with focus on major grain crops (maize, rice, and wheat). Our results show that there was low inter-species variation of sensitivity to N deficiency, i.e., the slope of the relationship between relative yield and integrated NNI. For grain crops, instantaneous NNI around anthesis demonstrated a better predictive capability for relative yield, outperforming other vegetative stages. This finding contributed to improving the understanding of the association between relative yield and NNI with implications for breeding programs, nutrient management practices, and crop modelling. Most importantly, this study is a contribution to improving the N nutrition diagnosis for several crop species, by using an integral, comparative approach.
EEA Balcarce
Fil: Rodriguez, Ignacio. Kansas State University. Department of Agronomy; Estados Unidos.
Fil: Rodriguez, Ignacio. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina.
Fil: Rodriguez, Ignacio. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina.
Fil: Lacasa, Josefina. Kansas State University. Department of Agronomy; Estados Unidos.
Fil: van Versendaal, Emmanuela. Kansas State University. Department of Agronomy; Estados Unidos.
Fil: Lemaire, Gilles. Institut National de la Recherche Agronomique; Francia.
Fil: Belanger, Gilles. Agriculture and Agri-Food Canada, Quebec Research and Development Centre; Canadá.
Fil: Jégo, Guillaume. Agriculture and Agri-Food Canada, Quebec Research and Development Centre; Canadá.
Fil: Sandaña, Patricio. Universidad Austral de Chile. Institute of Plant Production and Protection; Chile.
Fil: Soratto, Rogério. São Paulo State University. College of Agricultural Sciences; Brasil.
Fil: Djalovic, Ivica. National Institute of the Republic of Serbia. Institute of Field and Vegetable Crops; Serbia.
Fil: Ata-Ul-Karim, Syed Tahir. The Pennsylvania State University. Department of Plant Science; Estados Unidos.
Fil: Reussi Calvo, Nahuel Ignacio. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina.
Fil: Reussi Calvo, Nahuel Ignacio. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina.
Fil: Giletto, Claudia. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina.
Fil: Giletto, Claudia. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina.
Fil: Zhao, Ben. Chinese Academy of Agricultural Sciences. Ministry of Agriculture, Farmland Irrigation Research Institute; China
Fil: Ciampitti, Ignacio. Kansas State University. Department of Agronomy; Estados Unidos.
description Crop nitrogen (N) fertilization diagnoses via the N nutrition index (NNI)-yield relationship have been tested for several crop species, but a cross-species comparison of that relationship has not been performed yet. This study aimed to perform a cross-species comparison of the relationship between NNI and yield with emphasis on the yield sensitivity to N deficiency, slope of the models. Additionally, we conducted an evaluation to determine the best NNI sampling moment to predict relative yield, with focus on major grain crops. Based on a recently published global dataset to parametrize critical dilution curves, we calculated integrated NNI, instantaneous NNI, relative yield, and relative shoot biomass for annual ryegrass, tall fescue, maize, potato, rice, and wheat. We obtained 238 observations to fit integrated NNI-relative yield linear mixed-effects models and 1606 observations to fit instantaneous NNI-relative yield models. Subsequently, we performed a sensitivity analysis to determine the best NNI sampling moment to predict relative yield, with focus on major grain crops (maize, rice, and wheat). Our results show that there was low inter-species variation of sensitivity to N deficiency, i.e., the slope of the relationship between relative yield and integrated NNI. For grain crops, instantaneous NNI around anthesis demonstrated a better predictive capability for relative yield, outperforming other vegetative stages. This finding contributed to improving the understanding of the association between relative yield and NNI with implications for breeding programs, nutrient management practices, and crop modelling. Most importantly, this study is a contribution to improving the N nutrition diagnosis for several crop species, by using an integral, comparative approach.
publishDate 2024
dc.date.none.fl_str_mv 2024-03-12T18:04:53Z
2024-03-12T18:04:53Z
2024-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12123/17009
https://www.sciencedirect.com/science/article/pii/S1161030123003477
1161-0301 (Print)
1873-7331 (Online)
https://doi.org/10.1016/j.eja.2023.127079
url http://hdl.handle.net/20.500.12123/17009
https://www.sciencedirect.com/science/article/pii/S1161030123003477
https://doi.org/10.1016/j.eja.2023.127079
identifier_str_mv 1161-0301 (Print)
1873-7331 (Online)
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv restrictedAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv European Journal of Agronomy 154 : 127079 (March 2024)
reponame:INTA Digital (INTA)
instname:Instituto Nacional de Tecnología Agropecuaria
reponame_str INTA Digital (INTA)
collection INTA Digital (INTA)
instname_str Instituto Nacional de Tecnología Agropecuaria
repository.name.fl_str_mv INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria
repository.mail.fl_str_mv tripaldi.nicolas@inta.gob.ar
_version_ 1846143569481433088
score 12.712165