Pre - harvest sprouting and grain dormancy in Sorghum bicolor : what have we learned?

Autores
Benech Arnold, Roberto Luis; Rodríguez, María Verónica
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Fil: Benech Arnold, Roberto Luis. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Vegetal. Cátedra de Cultivos Industriales. Buenos Aires, Argentina.
Fil: Rodríguez, María Verónica. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina.
The possibility of obtaining sorghum grains with quality to match the standards for a diversity of end - uses is frequently hampered by the susceptibility to pre - harvest sprouting (PHS) displayed by many elite genotypes. For these reasons, obtaining resistance to PHS is considered in sorghum breeding programs, particularly when the crop is expected to approach harvest maturity under rainy or damp conditions prevalence. As in other cereals, the primary cause for sprouting susceptibility is a low dormancy prior to crop harvest; in consequence, most research has focused in understanding the mechanisms through which the duration of dormancy is differentially controlled in genotypes with contrasting sprouting behavior. With this aim two tanninless, red - grained inbred lines were used as a model system: IS9530 (sprouting resistant) and Redland B2 (sprouting susceptible). Redland B2 grains are able to germinate well before reaching physiological maturity (PM) while IS9530 ones can start to germinate at 40–45 days after pollination, well after PM. Results show that the anticipated dormancy loss displayed by Redland B2 grains is related reduced embryo sensitivity to abscisic acid (ABA) and increased levels of GA upon imbibition. In turn, transcriptional data showed that ABA signal transduction is impaired in Redland B2, which appears to have an impact on GA catabolism, thus affecting the overall GA/ABA balance that regulates germination. QTL analyses were conducted to test whether previous candidate genes were located in a dormancy QTL, but also to identify new genes involved in dormancy. These analyses yielded several dormancy QTL and one of them located in chromosome 9 (qGI-9) was consistently detected even across environments. Fine mapping is already in progress to narrow down the number of candidate genes in qGI-9.
grafs., tbls.
Fuente
Frontiers in Plant Science
Vol.9
art.811
http://www.frontiersin.org
Materia
SORGHUM BICOLOR
ABSCISIC ACID
DORMANCY QTL
GRAIN SORGHUM
PRE-HARVEST SPROUTING
SEED DORMANCY
Nivel de accesibilidad
acceso abierto
Condiciones de uso
acceso abierto
Repositorio
FAUBA Digital (UBA-FAUBA)
Institución
Universidad de Buenos Aires. Facultad de Agronomía
OAI Identificador
snrd:2018benecharnold

id FAUBA_aea3be0a9be8966091b0d53fa12bcb1c
oai_identifier_str snrd:2018benecharnold
network_acronym_str FAUBA
repository_id_str 2729
network_name_str FAUBA Digital (UBA-FAUBA)
spelling Pre - harvest sprouting and grain dormancy in Sorghum bicolor : what have we learned?Benech Arnold, Roberto LuisRodríguez, María VerónicaSORGHUM BICOLORABSCISIC ACIDDORMANCY QTLGRAIN SORGHUMPRE-HARVEST SPROUTINGSEED DORMANCYFil: Benech Arnold, Roberto Luis. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Vegetal. Cátedra de Cultivos Industriales. Buenos Aires, Argentina.Fil: Rodríguez, María Verónica. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina.The possibility of obtaining sorghum grains with quality to match the standards for a diversity of end - uses is frequently hampered by the susceptibility to pre - harvest sprouting (PHS) displayed by many elite genotypes. For these reasons, obtaining resistance to PHS is considered in sorghum breeding programs, particularly when the crop is expected to approach harvest maturity under rainy or damp conditions prevalence. As in other cereals, the primary cause for sprouting susceptibility is a low dormancy prior to crop harvest; in consequence, most research has focused in understanding the mechanisms through which the duration of dormancy is differentially controlled in genotypes with contrasting sprouting behavior. With this aim two tanninless, red - grained inbred lines were used as a model system: IS9530 (sprouting resistant) and Redland B2 (sprouting susceptible). Redland B2 grains are able to germinate well before reaching physiological maturity (PM) while IS9530 ones can start to germinate at 40–45 days after pollination, well after PM. Results show that the anticipated dormancy loss displayed by Redland B2 grains is related reduced embryo sensitivity to abscisic acid (ABA) and increased levels of GA upon imbibition. In turn, transcriptional data showed that ABA signal transduction is impaired in Redland B2, which appears to have an impact on GA catabolism, thus affecting the overall GA/ABA balance that regulates germination. QTL analyses were conducted to test whether previous candidate genes were located in a dormancy QTL, but also to identify new genes involved in dormancy. These analyses yielded several dormancy QTL and one of them located in chromosome 9 (qGI-9) was consistently detected even across environments. Fine mapping is already in progress to narrow down the number of candidate genes in qGI-9.grafs., tbls.2018info:eu-repo/semantics/articlepublishedVersioninfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfdoi:10.3389/fpls.2018.00811issn:1664-462xhttp://ri.agro.uba.ar/greenstone3/library/collection/arti/document/2018benecharnoldFrontiers in Plant ScienceVol.9art.811http://www.frontiersin.orgreponame:FAUBA Digital (UBA-FAUBA)instname:Universidad de Buenos Aires. Facultad de Agronomíaenginfo:eu-repo/semantics/openAccessopenAccesshttp://ri.agro.uba.ar/greenstone3/library/page/biblioteca#section42025-09-04T09:45:00Zsnrd:2018benecharnoldinstacron:UBA-FAUBAInstitucionalhttp://ri.agro.uba.ar/Universidad públicaNo correspondehttp://ri.agro.uba.ar/greenstone3/oaiserver?verb=ListSetsmartino@agro.uba.ar;berasa@agro.uba.ar ArgentinaNo correspondeNo correspondeNo correspondeopendoar:27292025-09-04 09:45:09.926FAUBA Digital (UBA-FAUBA) - Universidad de Buenos Aires. Facultad de Agronomíafalse
dc.title.none.fl_str_mv Pre - harvest sprouting and grain dormancy in Sorghum bicolor : what have we learned?
title Pre - harvest sprouting and grain dormancy in Sorghum bicolor : what have we learned?
spellingShingle Pre - harvest sprouting and grain dormancy in Sorghum bicolor : what have we learned?
Benech Arnold, Roberto Luis
SORGHUM BICOLOR
ABSCISIC ACID
DORMANCY QTL
GRAIN SORGHUM
PRE-HARVEST SPROUTING
SEED DORMANCY
title_short Pre - harvest sprouting and grain dormancy in Sorghum bicolor : what have we learned?
title_full Pre - harvest sprouting and grain dormancy in Sorghum bicolor : what have we learned?
title_fullStr Pre - harvest sprouting and grain dormancy in Sorghum bicolor : what have we learned?
title_full_unstemmed Pre - harvest sprouting and grain dormancy in Sorghum bicolor : what have we learned?
title_sort Pre - harvest sprouting and grain dormancy in Sorghum bicolor : what have we learned?
dc.creator.none.fl_str_mv Benech Arnold, Roberto Luis
Rodríguez, María Verónica
author Benech Arnold, Roberto Luis
author_facet Benech Arnold, Roberto Luis
Rodríguez, María Verónica
author_role author
author2 Rodríguez, María Verónica
author2_role author
dc.subject.none.fl_str_mv SORGHUM BICOLOR
ABSCISIC ACID
DORMANCY QTL
GRAIN SORGHUM
PRE-HARVEST SPROUTING
SEED DORMANCY
topic SORGHUM BICOLOR
ABSCISIC ACID
DORMANCY QTL
GRAIN SORGHUM
PRE-HARVEST SPROUTING
SEED DORMANCY
dc.description.none.fl_txt_mv Fil: Benech Arnold, Roberto Luis. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Vegetal. Cátedra de Cultivos Industriales. Buenos Aires, Argentina.
Fil: Rodríguez, María Verónica. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina.
The possibility of obtaining sorghum grains with quality to match the standards for a diversity of end - uses is frequently hampered by the susceptibility to pre - harvest sprouting (PHS) displayed by many elite genotypes. For these reasons, obtaining resistance to PHS is considered in sorghum breeding programs, particularly when the crop is expected to approach harvest maturity under rainy or damp conditions prevalence. As in other cereals, the primary cause for sprouting susceptibility is a low dormancy prior to crop harvest; in consequence, most research has focused in understanding the mechanisms through which the duration of dormancy is differentially controlled in genotypes with contrasting sprouting behavior. With this aim two tanninless, red - grained inbred lines were used as a model system: IS9530 (sprouting resistant) and Redland B2 (sprouting susceptible). Redland B2 grains are able to germinate well before reaching physiological maturity (PM) while IS9530 ones can start to germinate at 40–45 days after pollination, well after PM. Results show that the anticipated dormancy loss displayed by Redland B2 grains is related reduced embryo sensitivity to abscisic acid (ABA) and increased levels of GA upon imbibition. In turn, transcriptional data showed that ABA signal transduction is impaired in Redland B2, which appears to have an impact on GA catabolism, thus affecting the overall GA/ABA balance that regulates germination. QTL analyses were conducted to test whether previous candidate genes were located in a dormancy QTL, but also to identify new genes involved in dormancy. These analyses yielded several dormancy QTL and one of them located in chromosome 9 (qGI-9) was consistently detected even across environments. Fine mapping is already in progress to narrow down the number of candidate genes in qGI-9.
grafs., tbls.
description Fil: Benech Arnold, Roberto Luis. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Vegetal. Cátedra de Cultivos Industriales. Buenos Aires, Argentina.
publishDate 2018
dc.date.none.fl_str_mv 2018
dc.type.none.fl_str_mv info:eu-repo/semantics/article
publishedVersion
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv doi:10.3389/fpls.2018.00811
issn:1664-462x
http://ri.agro.uba.ar/greenstone3/library/collection/arti/document/2018benecharnold
identifier_str_mv doi:10.3389/fpls.2018.00811
issn:1664-462x
url http://ri.agro.uba.ar/greenstone3/library/collection/arti/document/2018benecharnold
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
openAccess
http://ri.agro.uba.ar/greenstone3/library/page/biblioteca#section4
eu_rights_str_mv openAccess
rights_invalid_str_mv openAccess
http://ri.agro.uba.ar/greenstone3/library/page/biblioteca#section4
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv Frontiers in Plant Science
Vol.9
art.811
http://www.frontiersin.org
reponame:FAUBA Digital (UBA-FAUBA)
instname:Universidad de Buenos Aires. Facultad de Agronomía
reponame_str FAUBA Digital (UBA-FAUBA)
collection FAUBA Digital (UBA-FAUBA)
instname_str Universidad de Buenos Aires. Facultad de Agronomía
repository.name.fl_str_mv FAUBA Digital (UBA-FAUBA) - Universidad de Buenos Aires. Facultad de Agronomía
repository.mail.fl_str_mv martino@agro.uba.ar;berasa@agro.uba.ar
_version_ 1842340873484894209
score 12.623145