The effect of the H−1 scaling factors t and w on the structure of H in the single‑step procedure

Autores
Martini, Johannes W. R.; Schrauf, Matías Florián; García Baccino, Carolina Andrea; Pimentel, Eduardo C. G.; Munilla Leguizamón, Sebastián; Rogberg Muñoz, Andrés; Cantet, Rodolfo Juan Carlos; Reimer, Christian; Gao, Ning; Wimmer, Valentin; Simianer, Henner
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Fil: Martini, Johannes W. R. KWS SAAT SE, Einbeck, Germany.
Fil: Schrauf, Matías Florián. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Animal. Buenos Aires, Argentina.
Fil: García Baccino, Carolina Andrea. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Animal. Buenos Aires, Argentina.
Fil: Pimentel, Eduardo C. G. Institute of Animal Breeding, Bavarian State Research Center for Agriculture. Poing‑Grub, Germany.
Fil: Munilla Leguizamón, Sebastián. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Animal. Buenos Aires, Argentina.
Fil: Rogberg Muñoz, Andrés. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Animal. Buenos Aires, Argentina.
Fil: Cantet, Rodolfo Juan Carlos. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Animal. Buenos Aires, Argentina.
Fil: Reimer, Christian. University of Goettingen. Animal Breeding and Genetics Group, Center for Integrated Breeding Research. Goettingen, Germany.
Fil: Gao, Ning. University of Goettingen. Animal Breeding and Genetics Group, Center for Integrated Breeding Research. Goettingen, Germany.
Fil: Wimmer, Valentin. KWS SAAT SE, Einbeck, Germany.
Fil: Simianer, Henner. University of Goettingen. Animal Breeding and Genetics Group, Center for Integrated Breeding Research. Goettingen, Germany.
Background: The single-step covariance matrix H combines the pedigree-based relationship matrix A with the more accurate information on realized relatedness of genotyped individuals represented by the genomic relationship matrix G. In particular, to improve convergence behavior of iterative approaches and to reduce inflation, two weights t and w have been introduced in the definition of H−1, which blend the inverse of a part of A with the inverse of G. Since the definition of this blending is based on the equation describing H−1, its impact on the structure of H is not obvious. In a joint discussion, we considered the question of the shape of H for non-trivial t and w. Results: Here, we present the general matrix H as a function of these parameters and discuss its structure and properties. Moreover, we screen for optimal values of t and w with respect to predictive ability, inflation and iterations up to convergence on a well investigated, publicly available wheat data set. Conclusion: Our results may help the reader to develop a better understanding for the effects of changes of t and w on the covariance model. In particular, we give theoretical arguments that as a general tendency, inflation will be reduced by increasing t or by decreasing w.
grafs.
Fuente
Genetics selection evolution
Vol.50, no.16
9
http://www.biomedcentral.com/
Materia
CONVERGENCE
CONVERGENT EVOLUTION
COVARIANCE ANALYSIS
DATA SET
GENOMICS
GENOTYPE
PARAMETERIZATION
PREDICTION
REDUCTION
RELATEDNESS
WHEAT
TRITICUM AESTIVUM
Nivel de accesibilidad
acceso abierto
Condiciones de uso
acceso abierto
Repositorio
FAUBA Digital (UBA-FAUBA)
Institución
Universidad de Buenos Aires. Facultad de Agronomía
OAI Identificador
snrd:2018martini

id FAUBA_8ed217aa945f48cbcce94a4120fe0401
oai_identifier_str snrd:2018martini
network_acronym_str FAUBA
repository_id_str 2729
network_name_str FAUBA Digital (UBA-FAUBA)
spelling The effect of the H−1 scaling factors t and w on the structure of H in the single‑step procedureMartini, Johannes W. R.Schrauf, Matías FloriánGarcía Baccino, Carolina AndreaPimentel, Eduardo C. G.Munilla Leguizamón, SebastiánRogberg Muñoz, AndrésCantet, Rodolfo Juan CarlosReimer, ChristianGao, NingWimmer, ValentinSimianer, HennerCONVERGENCECONVERGENT EVOLUTIONCOVARIANCE ANALYSISDATA SETGENOMICSGENOTYPEPARAMETERIZATIONPREDICTIONREDUCTIONRELATEDNESSWHEATTRITICUM AESTIVUMFil: Martini, Johannes W. R. KWS SAAT SE, Einbeck, Germany.Fil: Schrauf, Matías Florián. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Animal. Buenos Aires, Argentina.Fil: García Baccino, Carolina Andrea. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Animal. Buenos Aires, Argentina.Fil: Pimentel, Eduardo C. G. Institute of Animal Breeding, Bavarian State Research Center for Agriculture. Poing‑Grub, Germany.Fil: Munilla Leguizamón, Sebastián. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Animal. Buenos Aires, Argentina.Fil: Rogberg Muñoz, Andrés. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Animal. Buenos Aires, Argentina.Fil: Cantet, Rodolfo Juan Carlos. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Animal. Buenos Aires, Argentina.Fil: Reimer, Christian. University of Goettingen. Animal Breeding and Genetics Group, Center for Integrated Breeding Research. Goettingen, Germany.Fil: Gao, Ning. University of Goettingen. Animal Breeding and Genetics Group, Center for Integrated Breeding Research. Goettingen, Germany.Fil: Wimmer, Valentin. KWS SAAT SE, Einbeck, Germany.Fil: Simianer, Henner. University of Goettingen. Animal Breeding and Genetics Group, Center for Integrated Breeding Research. Goettingen, Germany.Background: The single-step covariance matrix H combines the pedigree-based relationship matrix A with the more accurate information on realized relatedness of genotyped individuals represented by the genomic relationship matrix G. In particular, to improve convergence behavior of iterative approaches and to reduce inflation, two weights t and w have been introduced in the definition of H−1, which blend the inverse of a part of A with the inverse of G. Since the definition of this blending is based on the equation describing H−1, its impact on the structure of H is not obvious. In a joint discussion, we considered the question of the shape of H for non-trivial t and w. Results: Here, we present the general matrix H as a function of these parameters and discuss its structure and properties. Moreover, we screen for optimal values of t and w with respect to predictive ability, inflation and iterations up to convergence on a well investigated, publicly available wheat data set. Conclusion: Our results may help the reader to develop a better understanding for the effects of changes of t and w on the covariance model. In particular, we give theoretical arguments that as a general tendency, inflation will be reduced by increasing t or by decreasing w.grafs.2018info:eu-repo/semantics/articlepublishedVersioninfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfdoi:10.1186/s12711-018-0386-xissn:0999-193Xhttp://ri.agro.uba.ar/greenstone3/library/collection/arti/document/2018martiniGenetics selection evolutionVol.50, no.169http://www.biomedcentral.com/reponame:FAUBA Digital (UBA-FAUBA)instname:Universidad de Buenos Aires. Facultad de Agronomíaenginfo:eu-repo/semantics/openAccessopenAccesshttp://ri.agro.uba.ar/greenstone3/library/page/biblioteca#section42025-09-29T13:41:09Zsnrd:2018martiniinstacron:UBA-FAUBAInstitucionalhttp://ri.agro.uba.ar/Universidad públicaNo correspondehttp://ri.agro.uba.ar/greenstone3/oaiserver?verb=ListSetsmartino@agro.uba.ar;berasa@agro.uba.ar ArgentinaNo correspondeNo correspondeNo correspondeopendoar:27292025-09-29 13:41:10.009FAUBA Digital (UBA-FAUBA) - Universidad de Buenos Aires. Facultad de Agronomíafalse
dc.title.none.fl_str_mv The effect of the H−1 scaling factors t and w on the structure of H in the single‑step procedure
title The effect of the H−1 scaling factors t and w on the structure of H in the single‑step procedure
spellingShingle The effect of the H−1 scaling factors t and w on the structure of H in the single‑step procedure
Martini, Johannes W. R.
CONVERGENCE
CONVERGENT EVOLUTION
COVARIANCE ANALYSIS
DATA SET
GENOMICS
GENOTYPE
PARAMETERIZATION
PREDICTION
REDUCTION
RELATEDNESS
WHEAT
TRITICUM AESTIVUM
title_short The effect of the H−1 scaling factors t and w on the structure of H in the single‑step procedure
title_full The effect of the H−1 scaling factors t and w on the structure of H in the single‑step procedure
title_fullStr The effect of the H−1 scaling factors t and w on the structure of H in the single‑step procedure
title_full_unstemmed The effect of the H−1 scaling factors t and w on the structure of H in the single‑step procedure
title_sort The effect of the H−1 scaling factors t and w on the structure of H in the single‑step procedure
dc.creator.none.fl_str_mv Martini, Johannes W. R.
Schrauf, Matías Florián
García Baccino, Carolina Andrea
Pimentel, Eduardo C. G.
Munilla Leguizamón, Sebastián
Rogberg Muñoz, Andrés
Cantet, Rodolfo Juan Carlos
Reimer, Christian
Gao, Ning
Wimmer, Valentin
Simianer, Henner
author Martini, Johannes W. R.
author_facet Martini, Johannes W. R.
Schrauf, Matías Florián
García Baccino, Carolina Andrea
Pimentel, Eduardo C. G.
Munilla Leguizamón, Sebastián
Rogberg Muñoz, Andrés
Cantet, Rodolfo Juan Carlos
Reimer, Christian
Gao, Ning
Wimmer, Valentin
Simianer, Henner
author_role author
author2 Schrauf, Matías Florián
García Baccino, Carolina Andrea
Pimentel, Eduardo C. G.
Munilla Leguizamón, Sebastián
Rogberg Muñoz, Andrés
Cantet, Rodolfo Juan Carlos
Reimer, Christian
Gao, Ning
Wimmer, Valentin
Simianer, Henner
author2_role author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv CONVERGENCE
CONVERGENT EVOLUTION
COVARIANCE ANALYSIS
DATA SET
GENOMICS
GENOTYPE
PARAMETERIZATION
PREDICTION
REDUCTION
RELATEDNESS
WHEAT
TRITICUM AESTIVUM
topic CONVERGENCE
CONVERGENT EVOLUTION
COVARIANCE ANALYSIS
DATA SET
GENOMICS
GENOTYPE
PARAMETERIZATION
PREDICTION
REDUCTION
RELATEDNESS
WHEAT
TRITICUM AESTIVUM
dc.description.none.fl_txt_mv Fil: Martini, Johannes W. R. KWS SAAT SE, Einbeck, Germany.
Fil: Schrauf, Matías Florián. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Animal. Buenos Aires, Argentina.
Fil: García Baccino, Carolina Andrea. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Animal. Buenos Aires, Argentina.
Fil: Pimentel, Eduardo C. G. Institute of Animal Breeding, Bavarian State Research Center for Agriculture. Poing‑Grub, Germany.
Fil: Munilla Leguizamón, Sebastián. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Animal. Buenos Aires, Argentina.
Fil: Rogberg Muñoz, Andrés. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Animal. Buenos Aires, Argentina.
Fil: Cantet, Rodolfo Juan Carlos. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Animal. Buenos Aires, Argentina.
Fil: Reimer, Christian. University of Goettingen. Animal Breeding and Genetics Group, Center for Integrated Breeding Research. Goettingen, Germany.
Fil: Gao, Ning. University of Goettingen. Animal Breeding and Genetics Group, Center for Integrated Breeding Research. Goettingen, Germany.
Fil: Wimmer, Valentin. KWS SAAT SE, Einbeck, Germany.
Fil: Simianer, Henner. University of Goettingen. Animal Breeding and Genetics Group, Center for Integrated Breeding Research. Goettingen, Germany.
Background: The single-step covariance matrix H combines the pedigree-based relationship matrix A with the more accurate information on realized relatedness of genotyped individuals represented by the genomic relationship matrix G. In particular, to improve convergence behavior of iterative approaches and to reduce inflation, two weights t and w have been introduced in the definition of H−1, which blend the inverse of a part of A with the inverse of G. Since the definition of this blending is based on the equation describing H−1, its impact on the structure of H is not obvious. In a joint discussion, we considered the question of the shape of H for non-trivial t and w. Results: Here, we present the general matrix H as a function of these parameters and discuss its structure and properties. Moreover, we screen for optimal values of t and w with respect to predictive ability, inflation and iterations up to convergence on a well investigated, publicly available wheat data set. Conclusion: Our results may help the reader to develop a better understanding for the effects of changes of t and w on the covariance model. In particular, we give theoretical arguments that as a general tendency, inflation will be reduced by increasing t or by decreasing w.
grafs.
description Fil: Martini, Johannes W. R. KWS SAAT SE, Einbeck, Germany.
publishDate 2018
dc.date.none.fl_str_mv 2018
dc.type.none.fl_str_mv info:eu-repo/semantics/article
publishedVersion
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv doi:10.1186/s12711-018-0386-x
issn:0999-193X
http://ri.agro.uba.ar/greenstone3/library/collection/arti/document/2018martini
identifier_str_mv doi:10.1186/s12711-018-0386-x
issn:0999-193X
url http://ri.agro.uba.ar/greenstone3/library/collection/arti/document/2018martini
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
openAccess
http://ri.agro.uba.ar/greenstone3/library/page/biblioteca#section4
eu_rights_str_mv openAccess
rights_invalid_str_mv openAccess
http://ri.agro.uba.ar/greenstone3/library/page/biblioteca#section4
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv Genetics selection evolution
Vol.50, no.16
9
http://www.biomedcentral.com/
reponame:FAUBA Digital (UBA-FAUBA)
instname:Universidad de Buenos Aires. Facultad de Agronomía
reponame_str FAUBA Digital (UBA-FAUBA)
collection FAUBA Digital (UBA-FAUBA)
instname_str Universidad de Buenos Aires. Facultad de Agronomía
repository.name.fl_str_mv FAUBA Digital (UBA-FAUBA) - Universidad de Buenos Aires. Facultad de Agronomía
repository.mail.fl_str_mv martino@agro.uba.ar;berasa@agro.uba.ar
_version_ 1844618853294800896
score 13.070432