Patagonian landscape modeling during Miocene to Present-day slab window formation
- Autores
- Avila, Pilar; Avila, Milagros; Davila, Federico Miguel; Ezpeleta, Miguel; Castellano, Nesvit Edit
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The subduction of seismic oceanic ridges often results in the formation of slab windows, which can affect not only the heat flow and retroarc volcanism, but also the exhumation and topographic evolution of the upper plate. An active and world-class example of a slab window is southern Patagonia, in southernmost South America, which is related to the subduction of the seismic oceanic South Chile Ridge between the middle–late Miocene and the Present day. How the subduction of the ridge and formation of the slab window have influenced the evolution of the Patagonian landscape, exhumation and topography is still under debate. Some works have proposed orogenic deformation mostly affecting the Pacific margin and hinterland areas, or an inherited early Miocene tectonic relief generated before the slab window formation. Others have preferred epeirogenesis hypotheses, such as dynamic uplift or isostatic rebound as a result of lithospheric thinning associated with asthenospheric or lithospheric mantle changes. In this work, we analyze the landscape evolution at medium (orogen-scale) and long wavelengths (embracing the whole of southern Patagonia, from coast to coast) using FastScape a landscape numerical model. This program was coupled with an optimization scheme (the Neighborhood Algorithm) suitable for nonlinear inverse problems. The “goodness” (fit to data) of our landscape evolution models was evaluated using: i) cooling ages, and ii) maximum elevations, in order to provide constraints on the uplift rates, erosion efficiency and effective elastic thickness. We then used the best values to compare two forward models representing medium- versus long-wavelength processes. Our results indicate that long-wavelength uplift geometry (including dynamic uplift and/or lithospheric rebound from thinning) involving areas from the Andes to the Atlantic coast was required from 12 Myr to the Present day in order to reproduce not only the youngest cooling ages but also Present-day topography.
Fil: Avila, Pilar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Ciencias de la Tierra. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones en Ciencias de la Tierra; Argentina
Fil: Avila, Milagros. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
Fil: Davila, Federico Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Ciencias de la Tierra. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones en Ciencias de la Tierra; Argentina
Fil: Ezpeleta, Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Ciencias de la Tierra. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones en Ciencias de la Tierra; Argentina
Fil: Castellano, Nesvit Edit. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina - Materia
-
INVERSE MODELING
ISOSTATIC REBOUND
SLAB WINDOW
SOUTHERN PATAGONIA - Nivel de accesibilidad
- acceso embargado
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/226020
Ver los metadatos del registro completo
| id |
CONICETDig_ffe6d7600cc7c9e52d77b2d13656d117 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/226020 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Patagonian landscape modeling during Miocene to Present-day slab window formationAvila, PilarAvila, MilagrosDavila, Federico MiguelEzpeleta, MiguelCastellano, Nesvit EditINVERSE MODELINGISOSTATIC REBOUNDSLAB WINDOWSOUTHERN PATAGONIAhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1The subduction of seismic oceanic ridges often results in the formation of slab windows, which can affect not only the heat flow and retroarc volcanism, but also the exhumation and topographic evolution of the upper plate. An active and world-class example of a slab window is southern Patagonia, in southernmost South America, which is related to the subduction of the seismic oceanic South Chile Ridge between the middle–late Miocene and the Present day. How the subduction of the ridge and formation of the slab window have influenced the evolution of the Patagonian landscape, exhumation and topography is still under debate. Some works have proposed orogenic deformation mostly affecting the Pacific margin and hinterland areas, or an inherited early Miocene tectonic relief generated before the slab window formation. Others have preferred epeirogenesis hypotheses, such as dynamic uplift or isostatic rebound as a result of lithospheric thinning associated with asthenospheric or lithospheric mantle changes. In this work, we analyze the landscape evolution at medium (orogen-scale) and long wavelengths (embracing the whole of southern Patagonia, from coast to coast) using FastScape a landscape numerical model. This program was coupled with an optimization scheme (the Neighborhood Algorithm) suitable for nonlinear inverse problems. The “goodness” (fit to data) of our landscape evolution models was evaluated using: i) cooling ages, and ii) maximum elevations, in order to provide constraints on the uplift rates, erosion efficiency and effective elastic thickness. We then used the best values to compare two forward models representing medium- versus long-wavelength processes. Our results indicate that long-wavelength uplift geometry (including dynamic uplift and/or lithospheric rebound from thinning) involving areas from the Andes to the Atlantic coast was required from 12 Myr to the Present day in order to reproduce not only the youngest cooling ages but also Present-day topography.Fil: Avila, Pilar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Ciencias de la Tierra. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones en Ciencias de la Tierra; ArgentinaFil: Avila, Milagros. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaFil: Davila, Federico Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Ciencias de la Tierra. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones en Ciencias de la Tierra; ArgentinaFil: Ezpeleta, Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Ciencias de la Tierra. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones en Ciencias de la Tierra; ArgentinaFil: Castellano, Nesvit Edit. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaElsevier Science2023-09info:eu-repo/date/embargoEnd/2024-03-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/226020Avila, Pilar; Avila, Milagros; Davila, Federico Miguel; Ezpeleta, Miguel; Castellano, Nesvit Edit; Patagonian landscape modeling during Miocene to Present-day slab window formation; Elsevier Science; Tectonophysics; 862; 9-2023; 1-420040-1951CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S004019512300269Xinfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.tecto.2023.229971info:eu-repo/semantics/embargoedAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:07:31Zoai:ri.conicet.gov.ar:11336/226020instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:07:31.6CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Patagonian landscape modeling during Miocene to Present-day slab window formation |
| title |
Patagonian landscape modeling during Miocene to Present-day slab window formation |
| spellingShingle |
Patagonian landscape modeling during Miocene to Present-day slab window formation Avila, Pilar INVERSE MODELING ISOSTATIC REBOUND SLAB WINDOW SOUTHERN PATAGONIA |
| title_short |
Patagonian landscape modeling during Miocene to Present-day slab window formation |
| title_full |
Patagonian landscape modeling during Miocene to Present-day slab window formation |
| title_fullStr |
Patagonian landscape modeling during Miocene to Present-day slab window formation |
| title_full_unstemmed |
Patagonian landscape modeling during Miocene to Present-day slab window formation |
| title_sort |
Patagonian landscape modeling during Miocene to Present-day slab window formation |
| dc.creator.none.fl_str_mv |
Avila, Pilar Avila, Milagros Davila, Federico Miguel Ezpeleta, Miguel Castellano, Nesvit Edit |
| author |
Avila, Pilar |
| author_facet |
Avila, Pilar Avila, Milagros Davila, Federico Miguel Ezpeleta, Miguel Castellano, Nesvit Edit |
| author_role |
author |
| author2 |
Avila, Milagros Davila, Federico Miguel Ezpeleta, Miguel Castellano, Nesvit Edit |
| author2_role |
author author author author |
| dc.subject.none.fl_str_mv |
INVERSE MODELING ISOSTATIC REBOUND SLAB WINDOW SOUTHERN PATAGONIA |
| topic |
INVERSE MODELING ISOSTATIC REBOUND SLAB WINDOW SOUTHERN PATAGONIA |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
The subduction of seismic oceanic ridges often results in the formation of slab windows, which can affect not only the heat flow and retroarc volcanism, but also the exhumation and topographic evolution of the upper plate. An active and world-class example of a slab window is southern Patagonia, in southernmost South America, which is related to the subduction of the seismic oceanic South Chile Ridge between the middle–late Miocene and the Present day. How the subduction of the ridge and formation of the slab window have influenced the evolution of the Patagonian landscape, exhumation and topography is still under debate. Some works have proposed orogenic deformation mostly affecting the Pacific margin and hinterland areas, or an inherited early Miocene tectonic relief generated before the slab window formation. Others have preferred epeirogenesis hypotheses, such as dynamic uplift or isostatic rebound as a result of lithospheric thinning associated with asthenospheric or lithospheric mantle changes. In this work, we analyze the landscape evolution at medium (orogen-scale) and long wavelengths (embracing the whole of southern Patagonia, from coast to coast) using FastScape a landscape numerical model. This program was coupled with an optimization scheme (the Neighborhood Algorithm) suitable for nonlinear inverse problems. The “goodness” (fit to data) of our landscape evolution models was evaluated using: i) cooling ages, and ii) maximum elevations, in order to provide constraints on the uplift rates, erosion efficiency and effective elastic thickness. We then used the best values to compare two forward models representing medium- versus long-wavelength processes. Our results indicate that long-wavelength uplift geometry (including dynamic uplift and/or lithospheric rebound from thinning) involving areas from the Andes to the Atlantic coast was required from 12 Myr to the Present day in order to reproduce not only the youngest cooling ages but also Present-day topography. Fil: Avila, Pilar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Ciencias de la Tierra. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones en Ciencias de la Tierra; Argentina Fil: Avila, Milagros. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina Fil: Davila, Federico Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Ciencias de la Tierra. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones en Ciencias de la Tierra; Argentina Fil: Ezpeleta, Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Ciencias de la Tierra. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones en Ciencias de la Tierra; Argentina Fil: Castellano, Nesvit Edit. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina |
| description |
The subduction of seismic oceanic ridges often results in the formation of slab windows, which can affect not only the heat flow and retroarc volcanism, but also the exhumation and topographic evolution of the upper plate. An active and world-class example of a slab window is southern Patagonia, in southernmost South America, which is related to the subduction of the seismic oceanic South Chile Ridge between the middle–late Miocene and the Present day. How the subduction of the ridge and formation of the slab window have influenced the evolution of the Patagonian landscape, exhumation and topography is still under debate. Some works have proposed orogenic deformation mostly affecting the Pacific margin and hinterland areas, or an inherited early Miocene tectonic relief generated before the slab window formation. Others have preferred epeirogenesis hypotheses, such as dynamic uplift or isostatic rebound as a result of lithospheric thinning associated with asthenospheric or lithospheric mantle changes. In this work, we analyze the landscape evolution at medium (orogen-scale) and long wavelengths (embracing the whole of southern Patagonia, from coast to coast) using FastScape a landscape numerical model. This program was coupled with an optimization scheme (the Neighborhood Algorithm) suitable for nonlinear inverse problems. The “goodness” (fit to data) of our landscape evolution models was evaluated using: i) cooling ages, and ii) maximum elevations, in order to provide constraints on the uplift rates, erosion efficiency and effective elastic thickness. We then used the best values to compare two forward models representing medium- versus long-wavelength processes. Our results indicate that long-wavelength uplift geometry (including dynamic uplift and/or lithospheric rebound from thinning) involving areas from the Andes to the Atlantic coast was required from 12 Myr to the Present day in order to reproduce not only the youngest cooling ages but also Present-day topography. |
| publishDate |
2023 |
| dc.date.none.fl_str_mv |
2023-09 info:eu-repo/date/embargoEnd/2024-03-06 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/226020 Avila, Pilar; Avila, Milagros; Davila, Federico Miguel; Ezpeleta, Miguel; Castellano, Nesvit Edit; Patagonian landscape modeling during Miocene to Present-day slab window formation; Elsevier Science; Tectonophysics; 862; 9-2023; 1-42 0040-1951 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/226020 |
| identifier_str_mv |
Avila, Pilar; Avila, Milagros; Davila, Federico Miguel; Ezpeleta, Miguel; Castellano, Nesvit Edit; Patagonian landscape modeling during Miocene to Present-day slab window formation; Elsevier Science; Tectonophysics; 862; 9-2023; 1-42 0040-1951 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S004019512300269X info:eu-repo/semantics/altIdentifier/doi/10.1016/j.tecto.2023.229971 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/embargoedAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
embargoedAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Elsevier Science |
| publisher.none.fl_str_mv |
Elsevier Science |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846781391558148096 |
| score |
12.982451 |