Mass Comparison of Protoplanetary Disk and Planetary Systems
- Autores
- Terluk, Aldana; Gil Hutton, Ricardo Alfredo
- Año de publicación
- 2025
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In recent decades, the number of discovered exoplanets has increased significantly and is expected to con-tinue growing due to advancements in detection methods. Simultaneously, the study of protoplanetary disks hasenabled the estimation of dust mass in various star-forming regions. Since these disks serve as the birthplace ofplanetary systems, a combined analysis of exoplanets and disks can improve our understanding of planet forma-tion and evolution. In this paper we compare existing estimates of dust mass in protoplanetary disks with the sol-id mass in known exoplanetary systems to estimate the initial solid mass required to form the observed popula-tion of planets. First, the total masses of exoplanetary systems are calculated and these values are then comparedwith the estimated dust mass in protoplanetary disks. The results indicate that in most cases the solid mass ofexoplanetary systems exceeds the expected mass of their original disks. Furthermore, it is found that early-stagedisks (Class 0 and Class I) may contain approximately 100 times more dust than those in more evolved stages(Class II). Finally, the results obtained also suggested that the solid mass of observed planetary systems could belimited to a maximum of 500 M⨁, which may constrain the growth of rocky planets and the accumulation of mate-rial in the cores of giant planets.
Fil: Terluk, Aldana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina. Universidad Nacional de San Juan. Facultad de Ciencias Exactas, Físicas y Naturales. Departamento de Geofísica y Astronomía; Argentina
Fil: Gil Hutton, Ricardo Alfredo. Universidad Nacional de San Juan. Facultad de Ciencias Exactas, Físicas y Naturales. Departamento de Geofísica y Astronomía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina - Materia
-
Exoplanets
Protoplanetary Disks
Planetary Systems - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/273580
Ver los metadatos del registro completo
id |
CONICETDig_fea871e1475033145209d4425851f6e6 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/273580 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Mass Comparison of Protoplanetary Disk and Planetary SystemsTerluk, AldanaGil Hutton, Ricardo AlfredoExoplanetsProtoplanetary DisksPlanetary Systemshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1In recent decades, the number of discovered exoplanets has increased significantly and is expected to con-tinue growing due to advancements in detection methods. Simultaneously, the study of protoplanetary disks hasenabled the estimation of dust mass in various star-forming regions. Since these disks serve as the birthplace ofplanetary systems, a combined analysis of exoplanets and disks can improve our understanding of planet forma-tion and evolution. In this paper we compare existing estimates of dust mass in protoplanetary disks with the sol-id mass in known exoplanetary systems to estimate the initial solid mass required to form the observed popula-tion of planets. First, the total masses of exoplanetary systems are calculated and these values are then comparedwith the estimated dust mass in protoplanetary disks. The results indicate that in most cases the solid mass ofexoplanetary systems exceeds the expected mass of their original disks. Furthermore, it is found that early-stagedisks (Class 0 and Class I) may contain approximately 100 times more dust than those in more evolved stages(Class II). Finally, the results obtained also suggested that the solid mass of observed planetary systems could belimited to a maximum of 500 M⨁, which may constrain the growth of rocky planets and the accumulation of mate-rial in the cores of giant planets.Fil: Terluk, Aldana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina. Universidad Nacional de San Juan. Facultad de Ciencias Exactas, Físicas y Naturales. Departamento de Geofísica y Astronomía; ArgentinaFil: Gil Hutton, Ricardo Alfredo. Universidad Nacional de San Juan. Facultad de Ciencias Exactas, Físicas y Naturales. Departamento de Geofísica y Astronomía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; ArgentinaNan Yang Academy of Sciences2025-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/273580Terluk, Aldana; Gil Hutton, Ricardo Alfredo; Mass Comparison of Protoplanetary Disk and Planetary Systems; Nan Yang Academy of Sciences; Earth and Planetary Science; 4; 1; 4-2025; 66-722810-97322810-9732CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://journals.nasspublishing.com/index.php/eps/article/view/1955info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:26:21Zoai:ri.conicet.gov.ar:11336/273580instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:26:21.898CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Mass Comparison of Protoplanetary Disk and Planetary Systems |
title |
Mass Comparison of Protoplanetary Disk and Planetary Systems |
spellingShingle |
Mass Comparison of Protoplanetary Disk and Planetary Systems Terluk, Aldana Exoplanets Protoplanetary Disks Planetary Systems |
title_short |
Mass Comparison of Protoplanetary Disk and Planetary Systems |
title_full |
Mass Comparison of Protoplanetary Disk and Planetary Systems |
title_fullStr |
Mass Comparison of Protoplanetary Disk and Planetary Systems |
title_full_unstemmed |
Mass Comparison of Protoplanetary Disk and Planetary Systems |
title_sort |
Mass Comparison of Protoplanetary Disk and Planetary Systems |
dc.creator.none.fl_str_mv |
Terluk, Aldana Gil Hutton, Ricardo Alfredo |
author |
Terluk, Aldana |
author_facet |
Terluk, Aldana Gil Hutton, Ricardo Alfredo |
author_role |
author |
author2 |
Gil Hutton, Ricardo Alfredo |
author2_role |
author |
dc.subject.none.fl_str_mv |
Exoplanets Protoplanetary Disks Planetary Systems |
topic |
Exoplanets Protoplanetary Disks Planetary Systems |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In recent decades, the number of discovered exoplanets has increased significantly and is expected to con-tinue growing due to advancements in detection methods. Simultaneously, the study of protoplanetary disks hasenabled the estimation of dust mass in various star-forming regions. Since these disks serve as the birthplace ofplanetary systems, a combined analysis of exoplanets and disks can improve our understanding of planet forma-tion and evolution. In this paper we compare existing estimates of dust mass in protoplanetary disks with the sol-id mass in known exoplanetary systems to estimate the initial solid mass required to form the observed popula-tion of planets. First, the total masses of exoplanetary systems are calculated and these values are then comparedwith the estimated dust mass in protoplanetary disks. The results indicate that in most cases the solid mass ofexoplanetary systems exceeds the expected mass of their original disks. Furthermore, it is found that early-stagedisks (Class 0 and Class I) may contain approximately 100 times more dust than those in more evolved stages(Class II). Finally, the results obtained also suggested that the solid mass of observed planetary systems could belimited to a maximum of 500 M⨁, which may constrain the growth of rocky planets and the accumulation of mate-rial in the cores of giant planets. Fil: Terluk, Aldana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina. Universidad Nacional de San Juan. Facultad de Ciencias Exactas, Físicas y Naturales. Departamento de Geofísica y Astronomía; Argentina Fil: Gil Hutton, Ricardo Alfredo. Universidad Nacional de San Juan. Facultad de Ciencias Exactas, Físicas y Naturales. Departamento de Geofísica y Astronomía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina |
description |
In recent decades, the number of discovered exoplanets has increased significantly and is expected to con-tinue growing due to advancements in detection methods. Simultaneously, the study of protoplanetary disks hasenabled the estimation of dust mass in various star-forming regions. Since these disks serve as the birthplace ofplanetary systems, a combined analysis of exoplanets and disks can improve our understanding of planet forma-tion and evolution. In this paper we compare existing estimates of dust mass in protoplanetary disks with the sol-id mass in known exoplanetary systems to estimate the initial solid mass required to form the observed popula-tion of planets. First, the total masses of exoplanetary systems are calculated and these values are then comparedwith the estimated dust mass in protoplanetary disks. The results indicate that in most cases the solid mass ofexoplanetary systems exceeds the expected mass of their original disks. Furthermore, it is found that early-stagedisks (Class 0 and Class I) may contain approximately 100 times more dust than those in more evolved stages(Class II). Finally, the results obtained also suggested that the solid mass of observed planetary systems could belimited to a maximum of 500 M⨁, which may constrain the growth of rocky planets and the accumulation of mate-rial in the cores of giant planets. |
publishDate |
2025 |
dc.date.none.fl_str_mv |
2025-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/273580 Terluk, Aldana; Gil Hutton, Ricardo Alfredo; Mass Comparison of Protoplanetary Disk and Planetary Systems; Nan Yang Academy of Sciences; Earth and Planetary Science; 4; 1; 4-2025; 66-72 2810-9732 2810-9732 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/273580 |
identifier_str_mv |
Terluk, Aldana; Gil Hutton, Ricardo Alfredo; Mass Comparison of Protoplanetary Disk and Planetary Systems; Nan Yang Academy of Sciences; Earth and Planetary Science; 4; 1; 4-2025; 66-72 2810-9732 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://journals.nasspublishing.com/index.php/eps/article/view/1955 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Nan Yang Academy of Sciences |
publisher.none.fl_str_mv |
Nan Yang Academy of Sciences |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846781821253058560 |
score |
12.982451 |