Mass Comparison of Protoplanetary Disk and Planetary Systems

Autores
Terluk, Aldana; Gil Hutton, Ricardo Alfredo
Año de publicación
2025
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In recent decades, the number of discovered exoplanets has increased significantly and is expected to con-tinue growing due to advancements in detection methods. Simultaneously, the study of protoplanetary disks hasenabled the estimation of dust mass in various star-forming regions. Since these disks serve as the birthplace ofplanetary systems, a combined analysis of exoplanets and disks can improve our understanding of planet forma-tion and evolution. In this paper we compare existing estimates of dust mass in protoplanetary disks with the sol-id mass in known exoplanetary systems to estimate the initial solid mass required to form the observed popula-tion of planets. First, the total masses of exoplanetary systems are calculated and these values are then comparedwith the estimated dust mass in protoplanetary disks. The results indicate that in most cases the solid mass ofexoplanetary systems exceeds the expected mass of their original disks. Furthermore, it is found that early-stagedisks (Class 0 and Class I) may contain approximately 100 times more dust than those in more evolved stages(Class II). Finally, the results obtained also suggested that the solid mass of observed planetary systems could belimited to a maximum of 500 M⨁, which may constrain the growth of rocky planets and the accumulation of mate-rial in the cores of giant planets.
Fil: Terluk, Aldana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina. Universidad Nacional de San Juan. Facultad de Ciencias Exactas, Físicas y Naturales. Departamento de Geofísica y Astronomía; Argentina
Fil: Gil Hutton, Ricardo Alfredo. Universidad Nacional de San Juan. Facultad de Ciencias Exactas, Físicas y Naturales. Departamento de Geofísica y Astronomía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina
Materia
Exoplanets
Protoplanetary Disks
Planetary Systems
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/273580

id CONICETDig_fea871e1475033145209d4425851f6e6
oai_identifier_str oai:ri.conicet.gov.ar:11336/273580
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Mass Comparison of Protoplanetary Disk and Planetary SystemsTerluk, AldanaGil Hutton, Ricardo AlfredoExoplanetsProtoplanetary DisksPlanetary Systemshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1In recent decades, the number of discovered exoplanets has increased significantly and is expected to con-tinue growing due to advancements in detection methods. Simultaneously, the study of protoplanetary disks hasenabled the estimation of dust mass in various star-forming regions. Since these disks serve as the birthplace ofplanetary systems, a combined analysis of exoplanets and disks can improve our understanding of planet forma-tion and evolution. In this paper we compare existing estimates of dust mass in protoplanetary disks with the sol-id mass in known exoplanetary systems to estimate the initial solid mass required to form the observed popula-tion of planets. First, the total masses of exoplanetary systems are calculated and these values are then comparedwith the estimated dust mass in protoplanetary disks. The results indicate that in most cases the solid mass ofexoplanetary systems exceeds the expected mass of their original disks. Furthermore, it is found that early-stagedisks (Class 0 and Class I) may contain approximately 100 times more dust than those in more evolved stages(Class II). Finally, the results obtained also suggested that the solid mass of observed planetary systems could belimited to a maximum of 500 M⨁, which may constrain the growth of rocky planets and the accumulation of mate-rial in the cores of giant planets.Fil: Terluk, Aldana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina. Universidad Nacional de San Juan. Facultad de Ciencias Exactas, Físicas y Naturales. Departamento de Geofísica y Astronomía; ArgentinaFil: Gil Hutton, Ricardo Alfredo. Universidad Nacional de San Juan. Facultad de Ciencias Exactas, Físicas y Naturales. Departamento de Geofísica y Astronomía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; ArgentinaNan Yang Academy of Sciences2025-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/273580Terluk, Aldana; Gil Hutton, Ricardo Alfredo; Mass Comparison of Protoplanetary Disk and Planetary Systems; Nan Yang Academy of Sciences; Earth and Planetary Science; 4; 1; 4-2025; 66-722810-97322810-9732CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://journals.nasspublishing.com/index.php/eps/article/view/1955info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:26:21Zoai:ri.conicet.gov.ar:11336/273580instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:26:21.898CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Mass Comparison of Protoplanetary Disk and Planetary Systems
title Mass Comparison of Protoplanetary Disk and Planetary Systems
spellingShingle Mass Comparison of Protoplanetary Disk and Planetary Systems
Terluk, Aldana
Exoplanets
Protoplanetary Disks
Planetary Systems
title_short Mass Comparison of Protoplanetary Disk and Planetary Systems
title_full Mass Comparison of Protoplanetary Disk and Planetary Systems
title_fullStr Mass Comparison of Protoplanetary Disk and Planetary Systems
title_full_unstemmed Mass Comparison of Protoplanetary Disk and Planetary Systems
title_sort Mass Comparison of Protoplanetary Disk and Planetary Systems
dc.creator.none.fl_str_mv Terluk, Aldana
Gil Hutton, Ricardo Alfredo
author Terluk, Aldana
author_facet Terluk, Aldana
Gil Hutton, Ricardo Alfredo
author_role author
author2 Gil Hutton, Ricardo Alfredo
author2_role author
dc.subject.none.fl_str_mv Exoplanets
Protoplanetary Disks
Planetary Systems
topic Exoplanets
Protoplanetary Disks
Planetary Systems
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In recent decades, the number of discovered exoplanets has increased significantly and is expected to con-tinue growing due to advancements in detection methods. Simultaneously, the study of protoplanetary disks hasenabled the estimation of dust mass in various star-forming regions. Since these disks serve as the birthplace ofplanetary systems, a combined analysis of exoplanets and disks can improve our understanding of planet forma-tion and evolution. In this paper we compare existing estimates of dust mass in protoplanetary disks with the sol-id mass in known exoplanetary systems to estimate the initial solid mass required to form the observed popula-tion of planets. First, the total masses of exoplanetary systems are calculated and these values are then comparedwith the estimated dust mass in protoplanetary disks. The results indicate that in most cases the solid mass ofexoplanetary systems exceeds the expected mass of their original disks. Furthermore, it is found that early-stagedisks (Class 0 and Class I) may contain approximately 100 times more dust than those in more evolved stages(Class II). Finally, the results obtained also suggested that the solid mass of observed planetary systems could belimited to a maximum of 500 M⨁, which may constrain the growth of rocky planets and the accumulation of mate-rial in the cores of giant planets.
Fil: Terluk, Aldana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina. Universidad Nacional de San Juan. Facultad de Ciencias Exactas, Físicas y Naturales. Departamento de Geofísica y Astronomía; Argentina
Fil: Gil Hutton, Ricardo Alfredo. Universidad Nacional de San Juan. Facultad de Ciencias Exactas, Físicas y Naturales. Departamento de Geofísica y Astronomía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina
description In recent decades, the number of discovered exoplanets has increased significantly and is expected to con-tinue growing due to advancements in detection methods. Simultaneously, the study of protoplanetary disks hasenabled the estimation of dust mass in various star-forming regions. Since these disks serve as the birthplace ofplanetary systems, a combined analysis of exoplanets and disks can improve our understanding of planet forma-tion and evolution. In this paper we compare existing estimates of dust mass in protoplanetary disks with the sol-id mass in known exoplanetary systems to estimate the initial solid mass required to form the observed popula-tion of planets. First, the total masses of exoplanetary systems are calculated and these values are then comparedwith the estimated dust mass in protoplanetary disks. The results indicate that in most cases the solid mass ofexoplanetary systems exceeds the expected mass of their original disks. Furthermore, it is found that early-stagedisks (Class 0 and Class I) may contain approximately 100 times more dust than those in more evolved stages(Class II). Finally, the results obtained also suggested that the solid mass of observed planetary systems could belimited to a maximum of 500 M⨁, which may constrain the growth of rocky planets and the accumulation of mate-rial in the cores of giant planets.
publishDate 2025
dc.date.none.fl_str_mv 2025-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/273580
Terluk, Aldana; Gil Hutton, Ricardo Alfredo; Mass Comparison of Protoplanetary Disk and Planetary Systems; Nan Yang Academy of Sciences; Earth and Planetary Science; 4; 1; 4-2025; 66-72
2810-9732
2810-9732
CONICET Digital
CONICET
url http://hdl.handle.net/11336/273580
identifier_str_mv Terluk, Aldana; Gil Hutton, Ricardo Alfredo; Mass Comparison of Protoplanetary Disk and Planetary Systems; Nan Yang Academy of Sciences; Earth and Planetary Science; 4; 1; 4-2025; 66-72
2810-9732
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://journals.nasspublishing.com/index.php/eps/article/view/1955
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Nan Yang Academy of Sciences
publisher.none.fl_str_mv Nan Yang Academy of Sciences
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846781821253058560
score 12.982451