Dichlorosilane-derived nano-silicon inside hollow carbon spheres as a high-performance anode for Li-ion batteries
- Autores
- Jaumann, Tony; Gerwig, Maik; Balach, Juan Manuel; Oswald, Steffen; Brendler, Erica; Hauser, Ralf; Kieback, Bernd; Eckert, Jürgen; Giebeler, Lars; Kroke, Edwin
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A novel and cost-effective synthesis of silicon nanocrystallites (<10 nm) sealed in hollow carbon spheres (nc-Si@HCS) is developed as a promising anode material for high-performance Li-ion batteries (LIBs). The preparation method involves dichlorosilane (H2SiCl2) as widely available feedstock, to form a hydrogen-rich polysiloxane as a precursor for the production of large quantities of silicon nanoparticles. The final electrode material is composed of agglomerated 5 nm sized silicon nanoparticles encapsulated within hollow micro-sized carbon structures. A high specific capacity of 1570 mA h gelectrode-1 at 0.25 A g-1 with a capacity retention of 65% after 250 deep discharge cycles and a reversible high areal capacity of up to 4 mA h cm-2 at a total mass loading of 3.2 mg cm-2 impressively demonstrate the excellent features of this novel anode material. We performed a detailed structural as well as electrochemical characterization in different electrolytes. Post mortem investigations help to understand the degradation mechanism in our material. The study herein heralds a new approach to structurally design advanced negative electrode materials with the potential to increase the specific energy of LIBs and to boost future electro-mobility technology.
Fil: Jaumann, Tony. Leibniz Institute for Solid State and Materials Research; Alemania
Fil: Gerwig, Maik. Technische Universität Bergakademie Freiberg; Alemania
Fil: Balach, Juan Manuel. Universidad Nacional de Rio Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina
Fil: Oswald, Steffen. Leibniz Institute for Solid State and Materials Research; Alemania
Fil: Brendler, Erica. Technische Universität Bergakademie Freiberg; Alemania
Fil: Hauser, Ralf. Fraunhofer Institute for Manufacturing Technology and Advanced Materials; Alemania
Fil: Kieback, Bernd. Fraunhofer Institute for Manufacturing Technology and Advanced Materials; Alemania
Fil: Eckert, Jürgen. Erich Schmid Institute of Materials Science; Austria. Montanuniversität Leoben; Austria
Fil: Giebeler, Lars. Leibniz Institute for Solid State and Materials Research; Alemania
Fil: Kroke, Edwin. Technische Universität Bergakademie Freiberg; Alemania - Materia
-
SILICON ANODE
HOLLOW CARBON SPHERES
HIGH PERFORMANCE
LI-ION BATTERY - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/132388
Ver los metadatos del registro completo
id |
CONICETDig_fe58ffb5be33e281c7851d19beaecb98 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/132388 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Dichlorosilane-derived nano-silicon inside hollow carbon spheres as a high-performance anode for Li-ion batteriesJaumann, TonyGerwig, MaikBalach, Juan ManuelOswald, SteffenBrendler, EricaHauser, RalfKieback, BerndEckert, JürgenGiebeler, LarsKroke, EdwinSILICON ANODEHOLLOW CARBON SPHERESHIGH PERFORMANCELI-ION BATTERYhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1A novel and cost-effective synthesis of silicon nanocrystallites (<10 nm) sealed in hollow carbon spheres (nc-Si@HCS) is developed as a promising anode material for high-performance Li-ion batteries (LIBs). The preparation method involves dichlorosilane (H2SiCl2) as widely available feedstock, to form a hydrogen-rich polysiloxane as a precursor for the production of large quantities of silicon nanoparticles. The final electrode material is composed of agglomerated 5 nm sized silicon nanoparticles encapsulated within hollow micro-sized carbon structures. A high specific capacity of 1570 mA h gelectrode-1 at 0.25 A g-1 with a capacity retention of 65% after 250 deep discharge cycles and a reversible high areal capacity of up to 4 mA h cm-2 at a total mass loading of 3.2 mg cm-2 impressively demonstrate the excellent features of this novel anode material. We performed a detailed structural as well as electrochemical characterization in different electrolytes. Post mortem investigations help to understand the degradation mechanism in our material. The study herein heralds a new approach to structurally design advanced negative electrode materials with the potential to increase the specific energy of LIBs and to boost future electro-mobility technology.Fil: Jaumann, Tony. Leibniz Institute for Solid State and Materials Research; AlemaniaFil: Gerwig, Maik. Technische Universität Bergakademie Freiberg; AlemaniaFil: Balach, Juan Manuel. Universidad Nacional de Rio Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaFil: Oswald, Steffen. Leibniz Institute for Solid State and Materials Research; AlemaniaFil: Brendler, Erica. Technische Universität Bergakademie Freiberg; AlemaniaFil: Hauser, Ralf. Fraunhofer Institute for Manufacturing Technology and Advanced Materials; AlemaniaFil: Kieback, Bernd. Fraunhofer Institute for Manufacturing Technology and Advanced Materials; AlemaniaFil: Eckert, Jürgen. Erich Schmid Institute of Materials Science; Austria. Montanuniversität Leoben; AustriaFil: Giebeler, Lars. Leibniz Institute for Solid State and Materials Research; AlemaniaFil: Kroke, Edwin. Technische Universität Bergakademie Freiberg; AlemaniaRoyal Society of Chemistry2017-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/132388Jaumann, Tony; Gerwig, Maik; Balach, Juan Manuel; Oswald, Steffen; Brendler, Erica; et al.; Dichlorosilane-derived nano-silicon inside hollow carbon spheres as a high-performance anode for Li-ion batteries; Royal Society of Chemistry; Journal of Materials Chemistry A; 5; 19; 3-2017; 9262-92712050-7496CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/info:eu-repo/semantics/altIdentifier/doi/10.1039/C7TA00188Finfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:43:17Zoai:ri.conicet.gov.ar:11336/132388instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:43:18.035CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Dichlorosilane-derived nano-silicon inside hollow carbon spheres as a high-performance anode for Li-ion batteries |
title |
Dichlorosilane-derived nano-silicon inside hollow carbon spheres as a high-performance anode for Li-ion batteries |
spellingShingle |
Dichlorosilane-derived nano-silicon inside hollow carbon spheres as a high-performance anode for Li-ion batteries Jaumann, Tony SILICON ANODE HOLLOW CARBON SPHERES HIGH PERFORMANCE LI-ION BATTERY |
title_short |
Dichlorosilane-derived nano-silicon inside hollow carbon spheres as a high-performance anode for Li-ion batteries |
title_full |
Dichlorosilane-derived nano-silicon inside hollow carbon spheres as a high-performance anode for Li-ion batteries |
title_fullStr |
Dichlorosilane-derived nano-silicon inside hollow carbon spheres as a high-performance anode for Li-ion batteries |
title_full_unstemmed |
Dichlorosilane-derived nano-silicon inside hollow carbon spheres as a high-performance anode for Li-ion batteries |
title_sort |
Dichlorosilane-derived nano-silicon inside hollow carbon spheres as a high-performance anode for Li-ion batteries |
dc.creator.none.fl_str_mv |
Jaumann, Tony Gerwig, Maik Balach, Juan Manuel Oswald, Steffen Brendler, Erica Hauser, Ralf Kieback, Bernd Eckert, Jürgen Giebeler, Lars Kroke, Edwin |
author |
Jaumann, Tony |
author_facet |
Jaumann, Tony Gerwig, Maik Balach, Juan Manuel Oswald, Steffen Brendler, Erica Hauser, Ralf Kieback, Bernd Eckert, Jürgen Giebeler, Lars Kroke, Edwin |
author_role |
author |
author2 |
Gerwig, Maik Balach, Juan Manuel Oswald, Steffen Brendler, Erica Hauser, Ralf Kieback, Bernd Eckert, Jürgen Giebeler, Lars Kroke, Edwin |
author2_role |
author author author author author author author author author |
dc.subject.none.fl_str_mv |
SILICON ANODE HOLLOW CARBON SPHERES HIGH PERFORMANCE LI-ION BATTERY |
topic |
SILICON ANODE HOLLOW CARBON SPHERES HIGH PERFORMANCE LI-ION BATTERY |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
A novel and cost-effective synthesis of silicon nanocrystallites (<10 nm) sealed in hollow carbon spheres (nc-Si@HCS) is developed as a promising anode material for high-performance Li-ion batteries (LIBs). The preparation method involves dichlorosilane (H2SiCl2) as widely available feedstock, to form a hydrogen-rich polysiloxane as a precursor for the production of large quantities of silicon nanoparticles. The final electrode material is composed of agglomerated 5 nm sized silicon nanoparticles encapsulated within hollow micro-sized carbon structures. A high specific capacity of 1570 mA h gelectrode-1 at 0.25 A g-1 with a capacity retention of 65% after 250 deep discharge cycles and a reversible high areal capacity of up to 4 mA h cm-2 at a total mass loading of 3.2 mg cm-2 impressively demonstrate the excellent features of this novel anode material. We performed a detailed structural as well as electrochemical characterization in different electrolytes. Post mortem investigations help to understand the degradation mechanism in our material. The study herein heralds a new approach to structurally design advanced negative electrode materials with the potential to increase the specific energy of LIBs and to boost future electro-mobility technology. Fil: Jaumann, Tony. Leibniz Institute for Solid State and Materials Research; Alemania Fil: Gerwig, Maik. Technische Universität Bergakademie Freiberg; Alemania Fil: Balach, Juan Manuel. Universidad Nacional de Rio Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina Fil: Oswald, Steffen. Leibniz Institute for Solid State and Materials Research; Alemania Fil: Brendler, Erica. Technische Universität Bergakademie Freiberg; Alemania Fil: Hauser, Ralf. Fraunhofer Institute for Manufacturing Technology and Advanced Materials; Alemania Fil: Kieback, Bernd. Fraunhofer Institute for Manufacturing Technology and Advanced Materials; Alemania Fil: Eckert, Jürgen. Erich Schmid Institute of Materials Science; Austria. Montanuniversität Leoben; Austria Fil: Giebeler, Lars. Leibniz Institute for Solid State and Materials Research; Alemania Fil: Kroke, Edwin. Technische Universität Bergakademie Freiberg; Alemania |
description |
A novel and cost-effective synthesis of silicon nanocrystallites (<10 nm) sealed in hollow carbon spheres (nc-Si@HCS) is developed as a promising anode material for high-performance Li-ion batteries (LIBs). The preparation method involves dichlorosilane (H2SiCl2) as widely available feedstock, to form a hydrogen-rich polysiloxane as a precursor for the production of large quantities of silicon nanoparticles. The final electrode material is composed of agglomerated 5 nm sized silicon nanoparticles encapsulated within hollow micro-sized carbon structures. A high specific capacity of 1570 mA h gelectrode-1 at 0.25 A g-1 with a capacity retention of 65% after 250 deep discharge cycles and a reversible high areal capacity of up to 4 mA h cm-2 at a total mass loading of 3.2 mg cm-2 impressively demonstrate the excellent features of this novel anode material. We performed a detailed structural as well as electrochemical characterization in different electrolytes. Post mortem investigations help to understand the degradation mechanism in our material. The study herein heralds a new approach to structurally design advanced negative electrode materials with the potential to increase the specific energy of LIBs and to boost future electro-mobility technology. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/132388 Jaumann, Tony; Gerwig, Maik; Balach, Juan Manuel; Oswald, Steffen; Brendler, Erica; et al.; Dichlorosilane-derived nano-silicon inside hollow carbon spheres as a high-performance anode for Li-ion batteries; Royal Society of Chemistry; Journal of Materials Chemistry A; 5; 19; 3-2017; 9262-9271 2050-7496 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/132388 |
identifier_str_mv |
Jaumann, Tony; Gerwig, Maik; Balach, Juan Manuel; Oswald, Steffen; Brendler, Erica; et al.; Dichlorosilane-derived nano-silicon inside hollow carbon spheres as a high-performance anode for Li-ion batteries; Royal Society of Chemistry; Journal of Materials Chemistry A; 5; 19; 3-2017; 9262-9271 2050-7496 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/ info:eu-repo/semantics/altIdentifier/doi/10.1039/C7TA00188F |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Royal Society of Chemistry |
publisher.none.fl_str_mv |
Royal Society of Chemistry |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268591411429376 |
score |
13.13397 |