Dichlorosilane-derived nano-silicon inside hollow carbon spheres as a high-performance anode for Li-ion batteries

Autores
Jaumann, Tony; Gerwig, Maik; Balach, Juan Manuel; Oswald, Steffen; Brendler, Erica; Hauser, Ralf; Kieback, Bernd; Eckert, Jürgen; Giebeler, Lars; Kroke, Edwin
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
A novel and cost-effective synthesis of silicon nanocrystallites (<10 nm) sealed in hollow carbon spheres (nc-Si@HCS) is developed as a promising anode material for high-performance Li-ion batteries (LIBs). The preparation method involves dichlorosilane (H2SiCl2) as widely available feedstock, to form a hydrogen-rich polysiloxane as a precursor for the production of large quantities of silicon nanoparticles. The final electrode material is composed of agglomerated 5 nm sized silicon nanoparticles encapsulated within hollow micro-sized carbon structures. A high specific capacity of 1570 mA h gelectrode-1 at 0.25 A g-1 with a capacity retention of 65% after 250 deep discharge cycles and a reversible high areal capacity of up to 4 mA h cm-2 at a total mass loading of 3.2 mg cm-2 impressively demonstrate the excellent features of this novel anode material. We performed a detailed structural as well as electrochemical characterization in different electrolytes. Post mortem investigations help to understand the degradation mechanism in our material. The study herein heralds a new approach to structurally design advanced negative electrode materials with the potential to increase the specific energy of LIBs and to boost future electro-mobility technology.
Fil: Jaumann, Tony. Leibniz Institute for Solid State and Materials Research; Alemania
Fil: Gerwig, Maik. Technische Universität Bergakademie Freiberg; Alemania
Fil: Balach, Juan Manuel. Universidad Nacional de Rio Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina
Fil: Oswald, Steffen. Leibniz Institute for Solid State and Materials Research; Alemania
Fil: Brendler, Erica. Technische Universität Bergakademie Freiberg; Alemania
Fil: Hauser, Ralf. Fraunhofer Institute for Manufacturing Technology and Advanced Materials; Alemania
Fil: Kieback, Bernd. Fraunhofer Institute for Manufacturing Technology and Advanced Materials; Alemania
Fil: Eckert, Jürgen. Erich Schmid Institute of Materials Science; Austria. Montanuniversität Leoben; Austria
Fil: Giebeler, Lars. Leibniz Institute for Solid State and Materials Research; Alemania
Fil: Kroke, Edwin. Technische Universität Bergakademie Freiberg; Alemania
Materia
SILICON ANODE
HOLLOW CARBON SPHERES
HIGH PERFORMANCE
LI-ION BATTERY
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/132388

id CONICETDig_fe58ffb5be33e281c7851d19beaecb98
oai_identifier_str oai:ri.conicet.gov.ar:11336/132388
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Dichlorosilane-derived nano-silicon inside hollow carbon spheres as a high-performance anode for Li-ion batteriesJaumann, TonyGerwig, MaikBalach, Juan ManuelOswald, SteffenBrendler, EricaHauser, RalfKieback, BerndEckert, JürgenGiebeler, LarsKroke, EdwinSILICON ANODEHOLLOW CARBON SPHERESHIGH PERFORMANCELI-ION BATTERYhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1A novel and cost-effective synthesis of silicon nanocrystallites (<10 nm) sealed in hollow carbon spheres (nc-Si@HCS) is developed as a promising anode material for high-performance Li-ion batteries (LIBs). The preparation method involves dichlorosilane (H2SiCl2) as widely available feedstock, to form a hydrogen-rich polysiloxane as a precursor for the production of large quantities of silicon nanoparticles. The final electrode material is composed of agglomerated 5 nm sized silicon nanoparticles encapsulated within hollow micro-sized carbon structures. A high specific capacity of 1570 mA h gelectrode-1 at 0.25 A g-1 with a capacity retention of 65% after 250 deep discharge cycles and a reversible high areal capacity of up to 4 mA h cm-2 at a total mass loading of 3.2 mg cm-2 impressively demonstrate the excellent features of this novel anode material. We performed a detailed structural as well as electrochemical characterization in different electrolytes. Post mortem investigations help to understand the degradation mechanism in our material. The study herein heralds a new approach to structurally design advanced negative electrode materials with the potential to increase the specific energy of LIBs and to boost future electro-mobility technology.Fil: Jaumann, Tony. Leibniz Institute for Solid State and Materials Research; AlemaniaFil: Gerwig, Maik. Technische Universität Bergakademie Freiberg; AlemaniaFil: Balach, Juan Manuel. Universidad Nacional de Rio Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaFil: Oswald, Steffen. Leibniz Institute for Solid State and Materials Research; AlemaniaFil: Brendler, Erica. Technische Universität Bergakademie Freiberg; AlemaniaFil: Hauser, Ralf. Fraunhofer Institute for Manufacturing Technology and Advanced Materials; AlemaniaFil: Kieback, Bernd. Fraunhofer Institute for Manufacturing Technology and Advanced Materials; AlemaniaFil: Eckert, Jürgen. Erich Schmid Institute of Materials Science; Austria. Montanuniversität Leoben; AustriaFil: Giebeler, Lars. Leibniz Institute for Solid State and Materials Research; AlemaniaFil: Kroke, Edwin. Technische Universität Bergakademie Freiberg; AlemaniaRoyal Society of Chemistry2017-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/132388Jaumann, Tony; Gerwig, Maik; Balach, Juan Manuel; Oswald, Steffen; Brendler, Erica; et al.; Dichlorosilane-derived nano-silicon inside hollow carbon spheres as a high-performance anode for Li-ion batteries; Royal Society of Chemistry; Journal of Materials Chemistry A; 5; 19; 3-2017; 9262-92712050-7496CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/info:eu-repo/semantics/altIdentifier/doi/10.1039/C7TA00188Finfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:43:17Zoai:ri.conicet.gov.ar:11336/132388instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:43:18.035CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Dichlorosilane-derived nano-silicon inside hollow carbon spheres as a high-performance anode for Li-ion batteries
title Dichlorosilane-derived nano-silicon inside hollow carbon spheres as a high-performance anode for Li-ion batteries
spellingShingle Dichlorosilane-derived nano-silicon inside hollow carbon spheres as a high-performance anode for Li-ion batteries
Jaumann, Tony
SILICON ANODE
HOLLOW CARBON SPHERES
HIGH PERFORMANCE
LI-ION BATTERY
title_short Dichlorosilane-derived nano-silicon inside hollow carbon spheres as a high-performance anode for Li-ion batteries
title_full Dichlorosilane-derived nano-silicon inside hollow carbon spheres as a high-performance anode for Li-ion batteries
title_fullStr Dichlorosilane-derived nano-silicon inside hollow carbon spheres as a high-performance anode for Li-ion batteries
title_full_unstemmed Dichlorosilane-derived nano-silicon inside hollow carbon spheres as a high-performance anode for Li-ion batteries
title_sort Dichlorosilane-derived nano-silicon inside hollow carbon spheres as a high-performance anode for Li-ion batteries
dc.creator.none.fl_str_mv Jaumann, Tony
Gerwig, Maik
Balach, Juan Manuel
Oswald, Steffen
Brendler, Erica
Hauser, Ralf
Kieback, Bernd
Eckert, Jürgen
Giebeler, Lars
Kroke, Edwin
author Jaumann, Tony
author_facet Jaumann, Tony
Gerwig, Maik
Balach, Juan Manuel
Oswald, Steffen
Brendler, Erica
Hauser, Ralf
Kieback, Bernd
Eckert, Jürgen
Giebeler, Lars
Kroke, Edwin
author_role author
author2 Gerwig, Maik
Balach, Juan Manuel
Oswald, Steffen
Brendler, Erica
Hauser, Ralf
Kieback, Bernd
Eckert, Jürgen
Giebeler, Lars
Kroke, Edwin
author2_role author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv SILICON ANODE
HOLLOW CARBON SPHERES
HIGH PERFORMANCE
LI-ION BATTERY
topic SILICON ANODE
HOLLOW CARBON SPHERES
HIGH PERFORMANCE
LI-ION BATTERY
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv A novel and cost-effective synthesis of silicon nanocrystallites (<10 nm) sealed in hollow carbon spheres (nc-Si@HCS) is developed as a promising anode material for high-performance Li-ion batteries (LIBs). The preparation method involves dichlorosilane (H2SiCl2) as widely available feedstock, to form a hydrogen-rich polysiloxane as a precursor for the production of large quantities of silicon nanoparticles. The final electrode material is composed of agglomerated 5 nm sized silicon nanoparticles encapsulated within hollow micro-sized carbon structures. A high specific capacity of 1570 mA h gelectrode-1 at 0.25 A g-1 with a capacity retention of 65% after 250 deep discharge cycles and a reversible high areal capacity of up to 4 mA h cm-2 at a total mass loading of 3.2 mg cm-2 impressively demonstrate the excellent features of this novel anode material. We performed a detailed structural as well as electrochemical characterization in different electrolytes. Post mortem investigations help to understand the degradation mechanism in our material. The study herein heralds a new approach to structurally design advanced negative electrode materials with the potential to increase the specific energy of LIBs and to boost future electro-mobility technology.
Fil: Jaumann, Tony. Leibniz Institute for Solid State and Materials Research; Alemania
Fil: Gerwig, Maik. Technische Universität Bergakademie Freiberg; Alemania
Fil: Balach, Juan Manuel. Universidad Nacional de Rio Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina
Fil: Oswald, Steffen. Leibniz Institute for Solid State and Materials Research; Alemania
Fil: Brendler, Erica. Technische Universität Bergakademie Freiberg; Alemania
Fil: Hauser, Ralf. Fraunhofer Institute for Manufacturing Technology and Advanced Materials; Alemania
Fil: Kieback, Bernd. Fraunhofer Institute for Manufacturing Technology and Advanced Materials; Alemania
Fil: Eckert, Jürgen. Erich Schmid Institute of Materials Science; Austria. Montanuniversität Leoben; Austria
Fil: Giebeler, Lars. Leibniz Institute for Solid State and Materials Research; Alemania
Fil: Kroke, Edwin. Technische Universität Bergakademie Freiberg; Alemania
description A novel and cost-effective synthesis of silicon nanocrystallites (<10 nm) sealed in hollow carbon spheres (nc-Si@HCS) is developed as a promising anode material for high-performance Li-ion batteries (LIBs). The preparation method involves dichlorosilane (H2SiCl2) as widely available feedstock, to form a hydrogen-rich polysiloxane as a precursor for the production of large quantities of silicon nanoparticles. The final electrode material is composed of agglomerated 5 nm sized silicon nanoparticles encapsulated within hollow micro-sized carbon structures. A high specific capacity of 1570 mA h gelectrode-1 at 0.25 A g-1 with a capacity retention of 65% after 250 deep discharge cycles and a reversible high areal capacity of up to 4 mA h cm-2 at a total mass loading of 3.2 mg cm-2 impressively demonstrate the excellent features of this novel anode material. We performed a detailed structural as well as electrochemical characterization in different electrolytes. Post mortem investigations help to understand the degradation mechanism in our material. The study herein heralds a new approach to structurally design advanced negative electrode materials with the potential to increase the specific energy of LIBs and to boost future electro-mobility technology.
publishDate 2017
dc.date.none.fl_str_mv 2017-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/132388
Jaumann, Tony; Gerwig, Maik; Balach, Juan Manuel; Oswald, Steffen; Brendler, Erica; et al.; Dichlorosilane-derived nano-silicon inside hollow carbon spheres as a high-performance anode for Li-ion batteries; Royal Society of Chemistry; Journal of Materials Chemistry A; 5; 19; 3-2017; 9262-9271
2050-7496
CONICET Digital
CONICET
url http://hdl.handle.net/11336/132388
identifier_str_mv Jaumann, Tony; Gerwig, Maik; Balach, Juan Manuel; Oswald, Steffen; Brendler, Erica; et al.; Dichlorosilane-derived nano-silicon inside hollow carbon spheres as a high-performance anode for Li-ion batteries; Royal Society of Chemistry; Journal of Materials Chemistry A; 5; 19; 3-2017; 9262-9271
2050-7496
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/
info:eu-repo/semantics/altIdentifier/doi/10.1039/C7TA00188F
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Royal Society of Chemistry
publisher.none.fl_str_mv Royal Society of Chemistry
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268591411429376
score 13.13397