Viscoelastic properties and efficient acoustic damping in confined polymer nano-layers at GHz frequencie
- Autores
- Hettich, Mike; Jacob, Karl; Ristow, Oliver; Schubert, Martin; Bruchhausen, Axel Emerico; Gusev, Vitalyi; Dekorsy, Thomas
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We investigate the viscoelastic properties of confined molecular nano-layers by time resolved optical pump-probe measurements. Access to the elastic properties is provided by the damping time of acoustic eigenmodes of thin metal films deposited on the molecular nano-layers which show a strong dependence on the molecular layer thickness and on the acoustic eigen-mode frequencies. An analytical model including the viscoelastic properties of the molecular layer allows us to obtain the longitudinal sound velocity as well as the acoustic absorption coefficient of the layer. Our experiments and theoretical analysis indicate for the first time that the molecular nano-layers are much more viscous than elastic in the investigated frequency range from 50 to 120 GHz and thus show pronounced acoustic absorption. The longitudinal acoustic wavenumber has nearly equal real and imaginary parts, both increasing proportional to the square root of the frequency. Thus, both acoustic velocity and acoustic absorption are proportional to the square root of frequency and the propagation of compressional/dilatational acoustic waves in the investigated nano-layers is of the diffusional type, similar to the propagation of shear waves in viscous liquids and thermal waves in solids.
Fil: Hettich, Mike. University of Konstanz; Alemania
Fil: Jacob, Karl. University of Konstanz; Alemania
Fil: Ristow, Oliver. University of Konstanz; Alemania
Fil: Schubert, Martin. University of Konstanz; Alemania
Fil: Bruchhausen, Axel Emerico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. University of Konstanz; Alemania
Fil: Gusev, Vitalyi. Université du Maine; Francia. Centre National de la Recherche Scientifique; Francia
Fil: Dekorsy, Thomas. German Aerospace Center; Alemania - Materia
-
Polymer molecular nano-layers
Viscoelastic properties
Time resolved optical pump-probe spectroscopy
Acoustic damping - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/78102
Ver los metadatos del registro completo
id |
CONICETDig_fd6680d5b455b5047129533a8d29f952 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/78102 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Viscoelastic properties and efficient acoustic damping in confined polymer nano-layers at GHz frequencieHettich, MikeJacob, KarlRistow, OliverSchubert, MartinBruchhausen, Axel EmericoGusev, VitalyiDekorsy, ThomasPolymer molecular nano-layersViscoelastic propertiesTime resolved optical pump-probe spectroscopyAcoustic dampinghttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We investigate the viscoelastic properties of confined molecular nano-layers by time resolved optical pump-probe measurements. Access to the elastic properties is provided by the damping time of acoustic eigenmodes of thin metal films deposited on the molecular nano-layers which show a strong dependence on the molecular layer thickness and on the acoustic eigen-mode frequencies. An analytical model including the viscoelastic properties of the molecular layer allows us to obtain the longitudinal sound velocity as well as the acoustic absorption coefficient of the layer. Our experiments and theoretical analysis indicate for the first time that the molecular nano-layers are much more viscous than elastic in the investigated frequency range from 50 to 120 GHz and thus show pronounced acoustic absorption. The longitudinal acoustic wavenumber has nearly equal real and imaginary parts, both increasing proportional to the square root of the frequency. Thus, both acoustic velocity and acoustic absorption are proportional to the square root of frequency and the propagation of compressional/dilatational acoustic waves in the investigated nano-layers is of the diffusional type, similar to the propagation of shear waves in viscous liquids and thermal waves in solids.Fil: Hettich, Mike. University of Konstanz; AlemaniaFil: Jacob, Karl. University of Konstanz; AlemaniaFil: Ristow, Oliver. University of Konstanz; AlemaniaFil: Schubert, Martin. University of Konstanz; AlemaniaFil: Bruchhausen, Axel Emerico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. University of Konstanz; AlemaniaFil: Gusev, Vitalyi. Université du Maine; Francia. Centre National de la Recherche Scientifique; FranciaFil: Dekorsy, Thomas. German Aerospace Center; AlemaniaNature Publishing Group2016-09-16info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/78102Hettich, Mike; Jacob, Karl; Ristow, Oliver; Schubert, Martin; Bruchhausen, Axel Emerico; et al.; Viscoelastic properties and efficient acoustic damping in confined polymer nano-layers at GHz frequencie; Nature Publishing Group; Scientific Reports; 6; 16-9-2016; 1-92045-2322CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1038/srep33471info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/srep33471info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:46:58Zoai:ri.conicet.gov.ar:11336/78102instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:46:58.414CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Viscoelastic properties and efficient acoustic damping in confined polymer nano-layers at GHz frequencie |
title |
Viscoelastic properties and efficient acoustic damping in confined polymer nano-layers at GHz frequencie |
spellingShingle |
Viscoelastic properties and efficient acoustic damping in confined polymer nano-layers at GHz frequencie Hettich, Mike Polymer molecular nano-layers Viscoelastic properties Time resolved optical pump-probe spectroscopy Acoustic damping |
title_short |
Viscoelastic properties and efficient acoustic damping in confined polymer nano-layers at GHz frequencie |
title_full |
Viscoelastic properties and efficient acoustic damping in confined polymer nano-layers at GHz frequencie |
title_fullStr |
Viscoelastic properties and efficient acoustic damping in confined polymer nano-layers at GHz frequencie |
title_full_unstemmed |
Viscoelastic properties and efficient acoustic damping in confined polymer nano-layers at GHz frequencie |
title_sort |
Viscoelastic properties and efficient acoustic damping in confined polymer nano-layers at GHz frequencie |
dc.creator.none.fl_str_mv |
Hettich, Mike Jacob, Karl Ristow, Oliver Schubert, Martin Bruchhausen, Axel Emerico Gusev, Vitalyi Dekorsy, Thomas |
author |
Hettich, Mike |
author_facet |
Hettich, Mike Jacob, Karl Ristow, Oliver Schubert, Martin Bruchhausen, Axel Emerico Gusev, Vitalyi Dekorsy, Thomas |
author_role |
author |
author2 |
Jacob, Karl Ristow, Oliver Schubert, Martin Bruchhausen, Axel Emerico Gusev, Vitalyi Dekorsy, Thomas |
author2_role |
author author author author author author |
dc.subject.none.fl_str_mv |
Polymer molecular nano-layers Viscoelastic properties Time resolved optical pump-probe spectroscopy Acoustic damping |
topic |
Polymer molecular nano-layers Viscoelastic properties Time resolved optical pump-probe spectroscopy Acoustic damping |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We investigate the viscoelastic properties of confined molecular nano-layers by time resolved optical pump-probe measurements. Access to the elastic properties is provided by the damping time of acoustic eigenmodes of thin metal films deposited on the molecular nano-layers which show a strong dependence on the molecular layer thickness and on the acoustic eigen-mode frequencies. An analytical model including the viscoelastic properties of the molecular layer allows us to obtain the longitudinal sound velocity as well as the acoustic absorption coefficient of the layer. Our experiments and theoretical analysis indicate for the first time that the molecular nano-layers are much more viscous than elastic in the investigated frequency range from 50 to 120 GHz and thus show pronounced acoustic absorption. The longitudinal acoustic wavenumber has nearly equal real and imaginary parts, both increasing proportional to the square root of the frequency. Thus, both acoustic velocity and acoustic absorption are proportional to the square root of frequency and the propagation of compressional/dilatational acoustic waves in the investigated nano-layers is of the diffusional type, similar to the propagation of shear waves in viscous liquids and thermal waves in solids. Fil: Hettich, Mike. University of Konstanz; Alemania Fil: Jacob, Karl. University of Konstanz; Alemania Fil: Ristow, Oliver. University of Konstanz; Alemania Fil: Schubert, Martin. University of Konstanz; Alemania Fil: Bruchhausen, Axel Emerico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. University of Konstanz; Alemania Fil: Gusev, Vitalyi. Université du Maine; Francia. Centre National de la Recherche Scientifique; Francia Fil: Dekorsy, Thomas. German Aerospace Center; Alemania |
description |
We investigate the viscoelastic properties of confined molecular nano-layers by time resolved optical pump-probe measurements. Access to the elastic properties is provided by the damping time of acoustic eigenmodes of thin metal films deposited on the molecular nano-layers which show a strong dependence on the molecular layer thickness and on the acoustic eigen-mode frequencies. An analytical model including the viscoelastic properties of the molecular layer allows us to obtain the longitudinal sound velocity as well as the acoustic absorption coefficient of the layer. Our experiments and theoretical analysis indicate for the first time that the molecular nano-layers are much more viscous than elastic in the investigated frequency range from 50 to 120 GHz and thus show pronounced acoustic absorption. The longitudinal acoustic wavenumber has nearly equal real and imaginary parts, both increasing proportional to the square root of the frequency. Thus, both acoustic velocity and acoustic absorption are proportional to the square root of frequency and the propagation of compressional/dilatational acoustic waves in the investigated nano-layers is of the diffusional type, similar to the propagation of shear waves in viscous liquids and thermal waves in solids. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-09-16 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/78102 Hettich, Mike; Jacob, Karl; Ristow, Oliver; Schubert, Martin; Bruchhausen, Axel Emerico; et al.; Viscoelastic properties and efficient acoustic damping in confined polymer nano-layers at GHz frequencie; Nature Publishing Group; Scientific Reports; 6; 16-9-2016; 1-9 2045-2322 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/78102 |
identifier_str_mv |
Hettich, Mike; Jacob, Karl; Ristow, Oliver; Schubert, Martin; Bruchhausen, Axel Emerico; et al.; Viscoelastic properties and efficient acoustic damping in confined polymer nano-layers at GHz frequencie; Nature Publishing Group; Scientific Reports; 6; 16-9-2016; 1-9 2045-2322 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1038/srep33471 info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/srep33471 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Nature Publishing Group |
publisher.none.fl_str_mv |
Nature Publishing Group |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614512284532736 |
score |
13.070432 |