Viscoelastic properties and efficient acoustic damping in confined polymer nano-layers at GHz frequencie

Autores
Hettich, Mike; Jacob, Karl; Ristow, Oliver; Schubert, Martin; Bruchhausen, Axel Emerico; Gusev, Vitalyi; Dekorsy, Thomas
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We investigate the viscoelastic properties of confined molecular nano-layers by time resolved optical pump-probe measurements. Access to the elastic properties is provided by the damping time of acoustic eigenmodes of thin metal films deposited on the molecular nano-layers which show a strong dependence on the molecular layer thickness and on the acoustic eigen-mode frequencies. An analytical model including the viscoelastic properties of the molecular layer allows us to obtain the longitudinal sound velocity as well as the acoustic absorption coefficient of the layer. Our experiments and theoretical analysis indicate for the first time that the molecular nano-layers are much more viscous than elastic in the investigated frequency range from 50 to 120 GHz and thus show pronounced acoustic absorption. The longitudinal acoustic wavenumber has nearly equal real and imaginary parts, both increasing proportional to the square root of the frequency. Thus, both acoustic velocity and acoustic absorption are proportional to the square root of frequency and the propagation of compressional/dilatational acoustic waves in the investigated nano-layers is of the diffusional type, similar to the propagation of shear waves in viscous liquids and thermal waves in solids.
Fil: Hettich, Mike. University of Konstanz; Alemania
Fil: Jacob, Karl. University of Konstanz; Alemania
Fil: Ristow, Oliver. University of Konstanz; Alemania
Fil: Schubert, Martin. University of Konstanz; Alemania
Fil: Bruchhausen, Axel Emerico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. University of Konstanz; Alemania
Fil: Gusev, Vitalyi. Université du Maine; Francia. Centre National de la Recherche Scientifique; Francia
Fil: Dekorsy, Thomas. German Aerospace Center; Alemania
Materia
Polymer molecular nano-layers
Viscoelastic properties
Time resolved optical pump-probe spectroscopy
Acoustic damping
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/78102

id CONICETDig_fd6680d5b455b5047129533a8d29f952
oai_identifier_str oai:ri.conicet.gov.ar:11336/78102
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Viscoelastic properties and efficient acoustic damping in confined polymer nano-layers at GHz frequencieHettich, MikeJacob, KarlRistow, OliverSchubert, MartinBruchhausen, Axel EmericoGusev, VitalyiDekorsy, ThomasPolymer molecular nano-layersViscoelastic propertiesTime resolved optical pump-probe spectroscopyAcoustic dampinghttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We investigate the viscoelastic properties of confined molecular nano-layers by time resolved optical pump-probe measurements. Access to the elastic properties is provided by the damping time of acoustic eigenmodes of thin metal films deposited on the molecular nano-layers which show a strong dependence on the molecular layer thickness and on the acoustic eigen-mode frequencies. An analytical model including the viscoelastic properties of the molecular layer allows us to obtain the longitudinal sound velocity as well as the acoustic absorption coefficient of the layer. Our experiments and theoretical analysis indicate for the first time that the molecular nano-layers are much more viscous than elastic in the investigated frequency range from 50 to 120 GHz and thus show pronounced acoustic absorption. The longitudinal acoustic wavenumber has nearly equal real and imaginary parts, both increasing proportional to the square root of the frequency. Thus, both acoustic velocity and acoustic absorption are proportional to the square root of frequency and the propagation of compressional/dilatational acoustic waves in the investigated nano-layers is of the diffusional type, similar to the propagation of shear waves in viscous liquids and thermal waves in solids.Fil: Hettich, Mike. University of Konstanz; AlemaniaFil: Jacob, Karl. University of Konstanz; AlemaniaFil: Ristow, Oliver. University of Konstanz; AlemaniaFil: Schubert, Martin. University of Konstanz; AlemaniaFil: Bruchhausen, Axel Emerico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. University of Konstanz; AlemaniaFil: Gusev, Vitalyi. Université du Maine; Francia. Centre National de la Recherche Scientifique; FranciaFil: Dekorsy, Thomas. German Aerospace Center; AlemaniaNature Publishing Group2016-09-16info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/78102Hettich, Mike; Jacob, Karl; Ristow, Oliver; Schubert, Martin; Bruchhausen, Axel Emerico; et al.; Viscoelastic properties and efficient acoustic damping in confined polymer nano-layers at GHz frequencie; Nature Publishing Group; Scientific Reports; 6; 16-9-2016; 1-92045-2322CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1038/srep33471info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/srep33471info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:46:58Zoai:ri.conicet.gov.ar:11336/78102instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:46:58.414CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Viscoelastic properties and efficient acoustic damping in confined polymer nano-layers at GHz frequencie
title Viscoelastic properties and efficient acoustic damping in confined polymer nano-layers at GHz frequencie
spellingShingle Viscoelastic properties and efficient acoustic damping in confined polymer nano-layers at GHz frequencie
Hettich, Mike
Polymer molecular nano-layers
Viscoelastic properties
Time resolved optical pump-probe spectroscopy
Acoustic damping
title_short Viscoelastic properties and efficient acoustic damping in confined polymer nano-layers at GHz frequencie
title_full Viscoelastic properties and efficient acoustic damping in confined polymer nano-layers at GHz frequencie
title_fullStr Viscoelastic properties and efficient acoustic damping in confined polymer nano-layers at GHz frequencie
title_full_unstemmed Viscoelastic properties and efficient acoustic damping in confined polymer nano-layers at GHz frequencie
title_sort Viscoelastic properties and efficient acoustic damping in confined polymer nano-layers at GHz frequencie
dc.creator.none.fl_str_mv Hettich, Mike
Jacob, Karl
Ristow, Oliver
Schubert, Martin
Bruchhausen, Axel Emerico
Gusev, Vitalyi
Dekorsy, Thomas
author Hettich, Mike
author_facet Hettich, Mike
Jacob, Karl
Ristow, Oliver
Schubert, Martin
Bruchhausen, Axel Emerico
Gusev, Vitalyi
Dekorsy, Thomas
author_role author
author2 Jacob, Karl
Ristow, Oliver
Schubert, Martin
Bruchhausen, Axel Emerico
Gusev, Vitalyi
Dekorsy, Thomas
author2_role author
author
author
author
author
author
dc.subject.none.fl_str_mv Polymer molecular nano-layers
Viscoelastic properties
Time resolved optical pump-probe spectroscopy
Acoustic damping
topic Polymer molecular nano-layers
Viscoelastic properties
Time resolved optical pump-probe spectroscopy
Acoustic damping
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We investigate the viscoelastic properties of confined molecular nano-layers by time resolved optical pump-probe measurements. Access to the elastic properties is provided by the damping time of acoustic eigenmodes of thin metal films deposited on the molecular nano-layers which show a strong dependence on the molecular layer thickness and on the acoustic eigen-mode frequencies. An analytical model including the viscoelastic properties of the molecular layer allows us to obtain the longitudinal sound velocity as well as the acoustic absorption coefficient of the layer. Our experiments and theoretical analysis indicate for the first time that the molecular nano-layers are much more viscous than elastic in the investigated frequency range from 50 to 120 GHz and thus show pronounced acoustic absorption. The longitudinal acoustic wavenumber has nearly equal real and imaginary parts, both increasing proportional to the square root of the frequency. Thus, both acoustic velocity and acoustic absorption are proportional to the square root of frequency and the propagation of compressional/dilatational acoustic waves in the investigated nano-layers is of the diffusional type, similar to the propagation of shear waves in viscous liquids and thermal waves in solids.
Fil: Hettich, Mike. University of Konstanz; Alemania
Fil: Jacob, Karl. University of Konstanz; Alemania
Fil: Ristow, Oliver. University of Konstanz; Alemania
Fil: Schubert, Martin. University of Konstanz; Alemania
Fil: Bruchhausen, Axel Emerico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. University of Konstanz; Alemania
Fil: Gusev, Vitalyi. Université du Maine; Francia. Centre National de la Recherche Scientifique; Francia
Fil: Dekorsy, Thomas. German Aerospace Center; Alemania
description We investigate the viscoelastic properties of confined molecular nano-layers by time resolved optical pump-probe measurements. Access to the elastic properties is provided by the damping time of acoustic eigenmodes of thin metal films deposited on the molecular nano-layers which show a strong dependence on the molecular layer thickness and on the acoustic eigen-mode frequencies. An analytical model including the viscoelastic properties of the molecular layer allows us to obtain the longitudinal sound velocity as well as the acoustic absorption coefficient of the layer. Our experiments and theoretical analysis indicate for the first time that the molecular nano-layers are much more viscous than elastic in the investigated frequency range from 50 to 120 GHz and thus show pronounced acoustic absorption. The longitudinal acoustic wavenumber has nearly equal real and imaginary parts, both increasing proportional to the square root of the frequency. Thus, both acoustic velocity and acoustic absorption are proportional to the square root of frequency and the propagation of compressional/dilatational acoustic waves in the investigated nano-layers is of the diffusional type, similar to the propagation of shear waves in viscous liquids and thermal waves in solids.
publishDate 2016
dc.date.none.fl_str_mv 2016-09-16
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/78102
Hettich, Mike; Jacob, Karl; Ristow, Oliver; Schubert, Martin; Bruchhausen, Axel Emerico; et al.; Viscoelastic properties and efficient acoustic damping in confined polymer nano-layers at GHz frequencie; Nature Publishing Group; Scientific Reports; 6; 16-9-2016; 1-9
2045-2322
CONICET Digital
CONICET
url http://hdl.handle.net/11336/78102
identifier_str_mv Hettich, Mike; Jacob, Karl; Ristow, Oliver; Schubert, Martin; Bruchhausen, Axel Emerico; et al.; Viscoelastic properties and efficient acoustic damping in confined polymer nano-layers at GHz frequencie; Nature Publishing Group; Scientific Reports; 6; 16-9-2016; 1-9
2045-2322
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1038/srep33471
info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/srep33471
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Nature Publishing Group
publisher.none.fl_str_mv Nature Publishing Group
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614512284532736
score 13.070432