Topic model for four-top at the LHC
- Autores
- Alvarez, Ezequiel; Lamagna, Federico Agustín; Szewc, Manuel
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study the implementation of a Topic Model algorithm in four-top searches at the LHC as a test-probe of a not ideal system for applying this technique. We study this Topic Model behavior as its different hypotheses such as mutual reducibility and equal distribution in all samples shift from true. The four-top final state at the LHC is not only relevant because it does not fulfill these conditions, but also because it is a difficult and inefficient system to reconstruct and current Monte Carlo modeling of signal and backgrounds suffers from non-negligible uncertainties. We implement this Topic Model algorithm in the Same-Sign lepton channel where S/B is of order one and all backgrounds cannot have more than two b-jets at parton level. We define different mixtures according to the number of b- jets and we use the total number of jets to demix. Since only the background has an anchor bin, we find that we can reconstruct the background in the signal region independently of Monte Carlo. We propose to use this information to tune the Monte Carlo in the signal region and then compare signal prediction with data. We also explore Machine Learning techniques applied to this Topic Model algorithm and find slight improvements as well as potential roads to investigate. Although our findings indicate that still with the full LHC run 3 data the implementation would be challenging, we pursue through this work to find ways to reduce the impact of Monte Carlo simulations in four-top searches at the LHC.
Fil: Alvarez, Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología. Centro Internacional de Estudios Avanzados; Argentina
Fil: Lamagna, Federico Agustín. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología. Centro Internacional de Estudios Avanzados; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina
Fil: Szewc, Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología. Centro Internacional de Estudios Avanzados; Argentina - Materia
-
FOUR-TOP-PRODUCTION
HADRON-HADRON SCATTERING (EXPERIMENTS) - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/168321
Ver los metadatos del registro completo
id |
CONICETDig_fd56b5e6d197095b8410eee9a20c5341 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/168321 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Topic model for four-top at the LHCAlvarez, EzequielLamagna, Federico AgustínSzewc, ManuelFOUR-TOP-PRODUCTIONHADRON-HADRON SCATTERING (EXPERIMENTS)https://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We study the implementation of a Topic Model algorithm in four-top searches at the LHC as a test-probe of a not ideal system for applying this technique. We study this Topic Model behavior as its different hypotheses such as mutual reducibility and equal distribution in all samples shift from true. The four-top final state at the LHC is not only relevant because it does not fulfill these conditions, but also because it is a difficult and inefficient system to reconstruct and current Monte Carlo modeling of signal and backgrounds suffers from non-negligible uncertainties. We implement this Topic Model algorithm in the Same-Sign lepton channel where S/B is of order one and all backgrounds cannot have more than two b-jets at parton level. We define different mixtures according to the number of b- jets and we use the total number of jets to demix. Since only the background has an anchor bin, we find that we can reconstruct the background in the signal region independently of Monte Carlo. We propose to use this information to tune the Monte Carlo in the signal region and then compare signal prediction with data. We also explore Machine Learning techniques applied to this Topic Model algorithm and find slight improvements as well as potential roads to investigate. Although our findings indicate that still with the full LHC run 3 data the implementation would be challenging, we pursue through this work to find ways to reduce the impact of Monte Carlo simulations in four-top searches at the LHC.Fil: Alvarez, Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología. Centro Internacional de Estudios Avanzados; ArgentinaFil: Lamagna, Federico Agustín. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología. Centro Internacional de Estudios Avanzados; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: Szewc, Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología. Centro Internacional de Estudios Avanzados; ArgentinaSpringer2020-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/168321Alvarez, Ezequiel; Lamagna, Federico Agustín; Szewc, Manuel; Topic model for four-top at the LHC; Springer; Journal of High Energy Physics; 49; 1-2020; 1-241029-84791126-6708CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/JHEP01(2020)049info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/JHEP01(2020)049info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1911.09699info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:35:16Zoai:ri.conicet.gov.ar:11336/168321instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:35:16.559CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Topic model for four-top at the LHC |
title |
Topic model for four-top at the LHC |
spellingShingle |
Topic model for four-top at the LHC Alvarez, Ezequiel FOUR-TOP-PRODUCTION HADRON-HADRON SCATTERING (EXPERIMENTS) |
title_short |
Topic model for four-top at the LHC |
title_full |
Topic model for four-top at the LHC |
title_fullStr |
Topic model for four-top at the LHC |
title_full_unstemmed |
Topic model for four-top at the LHC |
title_sort |
Topic model for four-top at the LHC |
dc.creator.none.fl_str_mv |
Alvarez, Ezequiel Lamagna, Federico Agustín Szewc, Manuel |
author |
Alvarez, Ezequiel |
author_facet |
Alvarez, Ezequiel Lamagna, Federico Agustín Szewc, Manuel |
author_role |
author |
author2 |
Lamagna, Federico Agustín Szewc, Manuel |
author2_role |
author author |
dc.subject.none.fl_str_mv |
FOUR-TOP-PRODUCTION HADRON-HADRON SCATTERING (EXPERIMENTS) |
topic |
FOUR-TOP-PRODUCTION HADRON-HADRON SCATTERING (EXPERIMENTS) |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We study the implementation of a Topic Model algorithm in four-top searches at the LHC as a test-probe of a not ideal system for applying this technique. We study this Topic Model behavior as its different hypotheses such as mutual reducibility and equal distribution in all samples shift from true. The four-top final state at the LHC is not only relevant because it does not fulfill these conditions, but also because it is a difficult and inefficient system to reconstruct and current Monte Carlo modeling of signal and backgrounds suffers from non-negligible uncertainties. We implement this Topic Model algorithm in the Same-Sign lepton channel where S/B is of order one and all backgrounds cannot have more than two b-jets at parton level. We define different mixtures according to the number of b- jets and we use the total number of jets to demix. Since only the background has an anchor bin, we find that we can reconstruct the background in the signal region independently of Monte Carlo. We propose to use this information to tune the Monte Carlo in the signal region and then compare signal prediction with data. We also explore Machine Learning techniques applied to this Topic Model algorithm and find slight improvements as well as potential roads to investigate. Although our findings indicate that still with the full LHC run 3 data the implementation would be challenging, we pursue through this work to find ways to reduce the impact of Monte Carlo simulations in four-top searches at the LHC. Fil: Alvarez, Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología. Centro Internacional de Estudios Avanzados; Argentina Fil: Lamagna, Federico Agustín. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología. Centro Internacional de Estudios Avanzados; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina Fil: Szewc, Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología. Centro Internacional de Estudios Avanzados; Argentina |
description |
We study the implementation of a Topic Model algorithm in four-top searches at the LHC as a test-probe of a not ideal system for applying this technique. We study this Topic Model behavior as its different hypotheses such as mutual reducibility and equal distribution in all samples shift from true. The four-top final state at the LHC is not only relevant because it does not fulfill these conditions, but also because it is a difficult and inefficient system to reconstruct and current Monte Carlo modeling of signal and backgrounds suffers from non-negligible uncertainties. We implement this Topic Model algorithm in the Same-Sign lepton channel where S/B is of order one and all backgrounds cannot have more than two b-jets at parton level. We define different mixtures according to the number of b- jets and we use the total number of jets to demix. Since only the background has an anchor bin, we find that we can reconstruct the background in the signal region independently of Monte Carlo. We propose to use this information to tune the Monte Carlo in the signal region and then compare signal prediction with data. We also explore Machine Learning techniques applied to this Topic Model algorithm and find slight improvements as well as potential roads to investigate. Although our findings indicate that still with the full LHC run 3 data the implementation would be challenging, we pursue through this work to find ways to reduce the impact of Monte Carlo simulations in four-top searches at the LHC. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/168321 Alvarez, Ezequiel; Lamagna, Federico Agustín; Szewc, Manuel; Topic model for four-top at the LHC; Springer; Journal of High Energy Physics; 49; 1-2020; 1-24 1029-8479 1126-6708 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/168321 |
identifier_str_mv |
Alvarez, Ezequiel; Lamagna, Federico Agustín; Szewc, Manuel; Topic model for four-top at the LHC; Springer; Journal of High Energy Physics; 49; 1-2020; 1-24 1029-8479 1126-6708 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/JHEP01(2020)049 info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/JHEP01(2020)049 info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1911.09699 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613097332932608 |
score |
13.070432 |