Predicting HLA CD4 immunogenicity in human populations

Autores
Dhanda, Sandeep Kumar; Karosiene, Edita; Edwards, Lindy; Grifoni, Alba; Paul, Sinu; Andreatta, Massimo; Weiskopf, Daniela; Sidney, John; Nielsen, Morten; Peters, Bjoern; Sette, Alessandro
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Background: Prediction of T cell immunogenicity is a topic of considerable interest, both in terms of basic understanding of the mechanisms of T cells responses and in terms of practical applications. HLA binding affinity is often used to predict T cell epitopes, since HLA binding affinity is a key requisite for human T cell immunogenicity. However, immunogenicity at the population it is complicated by the high level of variability of HLA molecules, potential other factors beyond HLA as well as the frequent lack of HLA typing data. To overcome those issues, we explored an alternative approach to identify the common characteristics able to distinguish immunogenic peptides from non-recognized peptides. Methods: Sets of dominant epitopes derived from peer-reviewed published papers were used in conjunction with negative peptides from the same experiments/donors to train neural networks and generate an "immunogenicity score." We also compared the performance of the immunogenicity score with previously described method for immunogenicity prediction based on HLA class II binding at the population level. Results: The immunogenicity score was validated on a series of independent datasets derived from the published literature, representing 57 independent studies where immunogenicity in human populations was assessed by testing overlapping peptides spanning different antigens. Overall, these testing datasets corresponded to over 2,000 peptides and tested in over 1,600 different human donors. The 7-allele method prediction and the immunogenicity score were associated with similar performance [average area under the ROC curve (AUC) values of 0.703 and 0.702, respectively] while the combined methods reached an average AUC of 0.725. This increase in average AUC value is significant compared with the immunogenicity score (p = 0.0135) and a strong trend toward significance is observed when compared to the 7-allele method (p = 0.0938). The new immunogenicity score method is now freely available using CD4 T cell immunogenicity prediction tool on the Immune Epitope Database website (http://tools.iedb.org/CD4episcore). Conclusion: The new immunogenicity score predicts CD4 T cell immunogenicity at the population level starting from protein sequences and with no need for HLA typing. Its efficacy has been validated in the context of different antigen sources, ethnicities, and disparate techniques for epitope identification.
Fil: Dhanda, Sandeep Kumar. La Jolla Institute for Allergy and Immunology; Estados Unidos
Fil: Karosiene, Edita. La Jolla Institute for Allergy and Immunology; Estados Unidos
Fil: Edwards, Lindy. La Jolla Institute for Allergy and Immunology; Estados Unidos
Fil: Grifoni, Alba. La Jolla Institute for Allergy and Immunology; Estados Unidos
Fil: Paul, Sinu. La Jolla Institute for Allergy and Immunology; Estados Unidos
Fil: Andreatta, Massimo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús). Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús); Argentina
Fil: Weiskopf, Daniela. La Jolla Institute for Allergy and Immunology; Estados Unidos
Fil: Sidney, John. La Jolla Institute for Allergy and Immunology; Estados Unidos
Fil: Nielsen, Morten. Technical University of Denmark; Dinamarca. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús). Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús); Argentina
Fil: Peters, Bjoern. University of California at San Diego; Estados Unidos. La Jolla Institute for Allergy and Immunology; Estados Unidos
Fil: Sette, Alessandro. University of California at San Diego; Estados Unidos. La Jolla Institute for Allergy and Immunology; Estados Unidos
Materia
BIOINFORMATICS
EPITOPES
HLA
IMMUNODOMINANCE
IMMUNOGENICITY
PREDICTIONS
TCR REPERTOIRE
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/97108

id CONICETDig_fd0b7cc011b902ce7cf4ab9b9ce7e0c7
oai_identifier_str oai:ri.conicet.gov.ar:11336/97108
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Predicting HLA CD4 immunogenicity in human populationsDhanda, Sandeep KumarKarosiene, EditaEdwards, LindyGrifoni, AlbaPaul, SinuAndreatta, MassimoWeiskopf, DanielaSidney, JohnNielsen, MortenPeters, BjoernSette, AlessandroBIOINFORMATICSEPITOPESHLAIMMUNODOMINANCEIMMUNOGENICITYPREDICTIONSTCR REPERTOIREhttps://purl.org/becyt/ford/3.3https://purl.org/becyt/ford/3Background: Prediction of T cell immunogenicity is a topic of considerable interest, both in terms of basic understanding of the mechanisms of T cells responses and in terms of practical applications. HLA binding affinity is often used to predict T cell epitopes, since HLA binding affinity is a key requisite for human T cell immunogenicity. However, immunogenicity at the population it is complicated by the high level of variability of HLA molecules, potential other factors beyond HLA as well as the frequent lack of HLA typing data. To overcome those issues, we explored an alternative approach to identify the common characteristics able to distinguish immunogenic peptides from non-recognized peptides. Methods: Sets of dominant epitopes derived from peer-reviewed published papers were used in conjunction with negative peptides from the same experiments/donors to train neural networks and generate an "immunogenicity score." We also compared the performance of the immunogenicity score with previously described method for immunogenicity prediction based on HLA class II binding at the population level. Results: The immunogenicity score was validated on a series of independent datasets derived from the published literature, representing 57 independent studies where immunogenicity in human populations was assessed by testing overlapping peptides spanning different antigens. Overall, these testing datasets corresponded to over 2,000 peptides and tested in over 1,600 different human donors. The 7-allele method prediction and the immunogenicity score were associated with similar performance [average area under the ROC curve (AUC) values of 0.703 and 0.702, respectively] while the combined methods reached an average AUC of 0.725. This increase in average AUC value is significant compared with the immunogenicity score (p = 0.0135) and a strong trend toward significance is observed when compared to the 7-allele method (p = 0.0938). The new immunogenicity score method is now freely available using CD4 T cell immunogenicity prediction tool on the Immune Epitope Database website (http://tools.iedb.org/CD4episcore). Conclusion: The new immunogenicity score predicts CD4 T cell immunogenicity at the population level starting from protein sequences and with no need for HLA typing. Its efficacy has been validated in the context of different antigen sources, ethnicities, and disparate techniques for epitope identification.Fil: Dhanda, Sandeep Kumar. La Jolla Institute for Allergy and Immunology; Estados UnidosFil: Karosiene, Edita. La Jolla Institute for Allergy and Immunology; Estados UnidosFil: Edwards, Lindy. La Jolla Institute for Allergy and Immunology; Estados UnidosFil: Grifoni, Alba. La Jolla Institute for Allergy and Immunology; Estados UnidosFil: Paul, Sinu. La Jolla Institute for Allergy and Immunology; Estados UnidosFil: Andreatta, Massimo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús). Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús); ArgentinaFil: Weiskopf, Daniela. La Jolla Institute for Allergy and Immunology; Estados UnidosFil: Sidney, John. La Jolla Institute for Allergy and Immunology; Estados UnidosFil: Nielsen, Morten. Technical University of Denmark; Dinamarca. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús). Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús); ArgentinaFil: Peters, Bjoern. University of California at San Diego; Estados Unidos. La Jolla Institute for Allergy and Immunology; Estados UnidosFil: Sette, Alessandro. University of California at San Diego; Estados Unidos. La Jolla Institute for Allergy and Immunology; Estados UnidosFrontiers Media S.A.2018-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/97108Dhanda, Sandeep Kumar; Karosiene, Edita; Edwards, Lindy; Grifoni, Alba; Paul, Sinu; et al.; Predicting HLA CD4 immunogenicity in human populations; Frontiers Media S.A.; Frontiers in Immunology; 9; 6-2018; 1-141664-3224CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.frontiersin.org/article/10.3389/fimmu.2018.01369/fullinfo:eu-repo/semantics/altIdentifier/doi/10.3389/fimmu.2018.01369info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:02:22Zoai:ri.conicet.gov.ar:11336/97108instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:02:22.93CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Predicting HLA CD4 immunogenicity in human populations
title Predicting HLA CD4 immunogenicity in human populations
spellingShingle Predicting HLA CD4 immunogenicity in human populations
Dhanda, Sandeep Kumar
BIOINFORMATICS
EPITOPES
HLA
IMMUNODOMINANCE
IMMUNOGENICITY
PREDICTIONS
TCR REPERTOIRE
title_short Predicting HLA CD4 immunogenicity in human populations
title_full Predicting HLA CD4 immunogenicity in human populations
title_fullStr Predicting HLA CD4 immunogenicity in human populations
title_full_unstemmed Predicting HLA CD4 immunogenicity in human populations
title_sort Predicting HLA CD4 immunogenicity in human populations
dc.creator.none.fl_str_mv Dhanda, Sandeep Kumar
Karosiene, Edita
Edwards, Lindy
Grifoni, Alba
Paul, Sinu
Andreatta, Massimo
Weiskopf, Daniela
Sidney, John
Nielsen, Morten
Peters, Bjoern
Sette, Alessandro
author Dhanda, Sandeep Kumar
author_facet Dhanda, Sandeep Kumar
Karosiene, Edita
Edwards, Lindy
Grifoni, Alba
Paul, Sinu
Andreatta, Massimo
Weiskopf, Daniela
Sidney, John
Nielsen, Morten
Peters, Bjoern
Sette, Alessandro
author_role author
author2 Karosiene, Edita
Edwards, Lindy
Grifoni, Alba
Paul, Sinu
Andreatta, Massimo
Weiskopf, Daniela
Sidney, John
Nielsen, Morten
Peters, Bjoern
Sette, Alessandro
author2_role author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv BIOINFORMATICS
EPITOPES
HLA
IMMUNODOMINANCE
IMMUNOGENICITY
PREDICTIONS
TCR REPERTOIRE
topic BIOINFORMATICS
EPITOPES
HLA
IMMUNODOMINANCE
IMMUNOGENICITY
PREDICTIONS
TCR REPERTOIRE
purl_subject.fl_str_mv https://purl.org/becyt/ford/3.3
https://purl.org/becyt/ford/3
dc.description.none.fl_txt_mv Background: Prediction of T cell immunogenicity is a topic of considerable interest, both in terms of basic understanding of the mechanisms of T cells responses and in terms of practical applications. HLA binding affinity is often used to predict T cell epitopes, since HLA binding affinity is a key requisite for human T cell immunogenicity. However, immunogenicity at the population it is complicated by the high level of variability of HLA molecules, potential other factors beyond HLA as well as the frequent lack of HLA typing data. To overcome those issues, we explored an alternative approach to identify the common characteristics able to distinguish immunogenic peptides from non-recognized peptides. Methods: Sets of dominant epitopes derived from peer-reviewed published papers were used in conjunction with negative peptides from the same experiments/donors to train neural networks and generate an "immunogenicity score." We also compared the performance of the immunogenicity score with previously described method for immunogenicity prediction based on HLA class II binding at the population level. Results: The immunogenicity score was validated on a series of independent datasets derived from the published literature, representing 57 independent studies where immunogenicity in human populations was assessed by testing overlapping peptides spanning different antigens. Overall, these testing datasets corresponded to over 2,000 peptides and tested in over 1,600 different human donors. The 7-allele method prediction and the immunogenicity score were associated with similar performance [average area under the ROC curve (AUC) values of 0.703 and 0.702, respectively] while the combined methods reached an average AUC of 0.725. This increase in average AUC value is significant compared with the immunogenicity score (p = 0.0135) and a strong trend toward significance is observed when compared to the 7-allele method (p = 0.0938). The new immunogenicity score method is now freely available using CD4 T cell immunogenicity prediction tool on the Immune Epitope Database website (http://tools.iedb.org/CD4episcore). Conclusion: The new immunogenicity score predicts CD4 T cell immunogenicity at the population level starting from protein sequences and with no need for HLA typing. Its efficacy has been validated in the context of different antigen sources, ethnicities, and disparate techniques for epitope identification.
Fil: Dhanda, Sandeep Kumar. La Jolla Institute for Allergy and Immunology; Estados Unidos
Fil: Karosiene, Edita. La Jolla Institute for Allergy and Immunology; Estados Unidos
Fil: Edwards, Lindy. La Jolla Institute for Allergy and Immunology; Estados Unidos
Fil: Grifoni, Alba. La Jolla Institute for Allergy and Immunology; Estados Unidos
Fil: Paul, Sinu. La Jolla Institute for Allergy and Immunology; Estados Unidos
Fil: Andreatta, Massimo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús). Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús); Argentina
Fil: Weiskopf, Daniela. La Jolla Institute for Allergy and Immunology; Estados Unidos
Fil: Sidney, John. La Jolla Institute for Allergy and Immunology; Estados Unidos
Fil: Nielsen, Morten. Technical University of Denmark; Dinamarca. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús). Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús); Argentina
Fil: Peters, Bjoern. University of California at San Diego; Estados Unidos. La Jolla Institute for Allergy and Immunology; Estados Unidos
Fil: Sette, Alessandro. University of California at San Diego; Estados Unidos. La Jolla Institute for Allergy and Immunology; Estados Unidos
description Background: Prediction of T cell immunogenicity is a topic of considerable interest, both in terms of basic understanding of the mechanisms of T cells responses and in terms of practical applications. HLA binding affinity is often used to predict T cell epitopes, since HLA binding affinity is a key requisite for human T cell immunogenicity. However, immunogenicity at the population it is complicated by the high level of variability of HLA molecules, potential other factors beyond HLA as well as the frequent lack of HLA typing data. To overcome those issues, we explored an alternative approach to identify the common characteristics able to distinguish immunogenic peptides from non-recognized peptides. Methods: Sets of dominant epitopes derived from peer-reviewed published papers were used in conjunction with negative peptides from the same experiments/donors to train neural networks and generate an "immunogenicity score." We also compared the performance of the immunogenicity score with previously described method for immunogenicity prediction based on HLA class II binding at the population level. Results: The immunogenicity score was validated on a series of independent datasets derived from the published literature, representing 57 independent studies where immunogenicity in human populations was assessed by testing overlapping peptides spanning different antigens. Overall, these testing datasets corresponded to over 2,000 peptides and tested in over 1,600 different human donors. The 7-allele method prediction and the immunogenicity score were associated with similar performance [average area under the ROC curve (AUC) values of 0.703 and 0.702, respectively] while the combined methods reached an average AUC of 0.725. This increase in average AUC value is significant compared with the immunogenicity score (p = 0.0135) and a strong trend toward significance is observed when compared to the 7-allele method (p = 0.0938). The new immunogenicity score method is now freely available using CD4 T cell immunogenicity prediction tool on the Immune Epitope Database website (http://tools.iedb.org/CD4episcore). Conclusion: The new immunogenicity score predicts CD4 T cell immunogenicity at the population level starting from protein sequences and with no need for HLA typing. Its efficacy has been validated in the context of different antigen sources, ethnicities, and disparate techniques for epitope identification.
publishDate 2018
dc.date.none.fl_str_mv 2018-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/97108
Dhanda, Sandeep Kumar; Karosiene, Edita; Edwards, Lindy; Grifoni, Alba; Paul, Sinu; et al.; Predicting HLA CD4 immunogenicity in human populations; Frontiers Media S.A.; Frontiers in Immunology; 9; 6-2018; 1-14
1664-3224
CONICET Digital
CONICET
url http://hdl.handle.net/11336/97108
identifier_str_mv Dhanda, Sandeep Kumar; Karosiene, Edita; Edwards, Lindy; Grifoni, Alba; Paul, Sinu; et al.; Predicting HLA CD4 immunogenicity in human populations; Frontiers Media S.A.; Frontiers in Immunology; 9; 6-2018; 1-14
1664-3224
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.frontiersin.org/article/10.3389/fimmu.2018.01369/full
info:eu-repo/semantics/altIdentifier/doi/10.3389/fimmu.2018.01369
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Frontiers Media S.A.
publisher.none.fl_str_mv Frontiers Media S.A.
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269753470615552
score 13.13397