Predicting HLA CD4 immunogenicity in human populations
- Autores
- Dhanda, Sandeep Kumar; Karosiene, Edita; Edwards, Lindy; Grifoni, Alba; Paul, Sinu; Andreatta, Massimo; Weiskopf, Daniela; Sidney, John; Nielsen, Morten; Peters, Bjoern; Sette, Alessandro
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Background: Prediction of T cell immunogenicity is a topic of considerable interest, both in terms of basic understanding of the mechanisms of T cells responses and in terms of practical applications. HLA binding affinity is often used to predict T cell epitopes, since HLA binding affinity is a key requisite for human T cell immunogenicity. However, immunogenicity at the population it is complicated by the high level of variability of HLA molecules, potential other factors beyond HLA as well as the frequent lack of HLA typing data. To overcome those issues, we explored an alternative approach to identify the common characteristics able to distinguish immunogenic peptides from non-recognized peptides. Methods: Sets of dominant epitopes derived from peer-reviewed published papers were used in conjunction with negative peptides from the same experiments/donors to train neural networks and generate an "immunogenicity score." We also compared the performance of the immunogenicity score with previously described method for immunogenicity prediction based on HLA class II binding at the population level. Results: The immunogenicity score was validated on a series of independent datasets derived from the published literature, representing 57 independent studies where immunogenicity in human populations was assessed by testing overlapping peptides spanning different antigens. Overall, these testing datasets corresponded to over 2,000 peptides and tested in over 1,600 different human donors. The 7-allele method prediction and the immunogenicity score were associated with similar performance [average area under the ROC curve (AUC) values of 0.703 and 0.702, respectively] while the combined methods reached an average AUC of 0.725. This increase in average AUC value is significant compared with the immunogenicity score (p = 0.0135) and a strong trend toward significance is observed when compared to the 7-allele method (p = 0.0938). The new immunogenicity score method is now freely available using CD4 T cell immunogenicity prediction tool on the Immune Epitope Database website (http://tools.iedb.org/CD4episcore). Conclusion: The new immunogenicity score predicts CD4 T cell immunogenicity at the population level starting from protein sequences and with no need for HLA typing. Its efficacy has been validated in the context of different antigen sources, ethnicities, and disparate techniques for epitope identification.
Fil: Dhanda, Sandeep Kumar. La Jolla Institute for Allergy and Immunology; Estados Unidos
Fil: Karosiene, Edita. La Jolla Institute for Allergy and Immunology; Estados Unidos
Fil: Edwards, Lindy. La Jolla Institute for Allergy and Immunology; Estados Unidos
Fil: Grifoni, Alba. La Jolla Institute for Allergy and Immunology; Estados Unidos
Fil: Paul, Sinu. La Jolla Institute for Allergy and Immunology; Estados Unidos
Fil: Andreatta, Massimo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús). Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús); Argentina
Fil: Weiskopf, Daniela. La Jolla Institute for Allergy and Immunology; Estados Unidos
Fil: Sidney, John. La Jolla Institute for Allergy and Immunology; Estados Unidos
Fil: Nielsen, Morten. Technical University of Denmark; Dinamarca. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús). Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús); Argentina
Fil: Peters, Bjoern. University of California at San Diego; Estados Unidos. La Jolla Institute for Allergy and Immunology; Estados Unidos
Fil: Sette, Alessandro. University of California at San Diego; Estados Unidos. La Jolla Institute for Allergy and Immunology; Estados Unidos - Materia
-
BIOINFORMATICS
EPITOPES
HLA
IMMUNODOMINANCE
IMMUNOGENICITY
PREDICTIONS
TCR REPERTOIRE - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/97108
Ver los metadatos del registro completo
id |
CONICETDig_fd0b7cc011b902ce7cf4ab9b9ce7e0c7 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/97108 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Predicting HLA CD4 immunogenicity in human populationsDhanda, Sandeep KumarKarosiene, EditaEdwards, LindyGrifoni, AlbaPaul, SinuAndreatta, MassimoWeiskopf, DanielaSidney, JohnNielsen, MortenPeters, BjoernSette, AlessandroBIOINFORMATICSEPITOPESHLAIMMUNODOMINANCEIMMUNOGENICITYPREDICTIONSTCR REPERTOIREhttps://purl.org/becyt/ford/3.3https://purl.org/becyt/ford/3Background: Prediction of T cell immunogenicity is a topic of considerable interest, both in terms of basic understanding of the mechanisms of T cells responses and in terms of practical applications. HLA binding affinity is often used to predict T cell epitopes, since HLA binding affinity is a key requisite for human T cell immunogenicity. However, immunogenicity at the population it is complicated by the high level of variability of HLA molecules, potential other factors beyond HLA as well as the frequent lack of HLA typing data. To overcome those issues, we explored an alternative approach to identify the common characteristics able to distinguish immunogenic peptides from non-recognized peptides. Methods: Sets of dominant epitopes derived from peer-reviewed published papers were used in conjunction with negative peptides from the same experiments/donors to train neural networks and generate an "immunogenicity score." We also compared the performance of the immunogenicity score with previously described method for immunogenicity prediction based on HLA class II binding at the population level. Results: The immunogenicity score was validated on a series of independent datasets derived from the published literature, representing 57 independent studies where immunogenicity in human populations was assessed by testing overlapping peptides spanning different antigens. Overall, these testing datasets corresponded to over 2,000 peptides and tested in over 1,600 different human donors. The 7-allele method prediction and the immunogenicity score were associated with similar performance [average area under the ROC curve (AUC) values of 0.703 and 0.702, respectively] while the combined methods reached an average AUC of 0.725. This increase in average AUC value is significant compared with the immunogenicity score (p = 0.0135) and a strong trend toward significance is observed when compared to the 7-allele method (p = 0.0938). The new immunogenicity score method is now freely available using CD4 T cell immunogenicity prediction tool on the Immune Epitope Database website (http://tools.iedb.org/CD4episcore). Conclusion: The new immunogenicity score predicts CD4 T cell immunogenicity at the population level starting from protein sequences and with no need for HLA typing. Its efficacy has been validated in the context of different antigen sources, ethnicities, and disparate techniques for epitope identification.Fil: Dhanda, Sandeep Kumar. La Jolla Institute for Allergy and Immunology; Estados UnidosFil: Karosiene, Edita. La Jolla Institute for Allergy and Immunology; Estados UnidosFil: Edwards, Lindy. La Jolla Institute for Allergy and Immunology; Estados UnidosFil: Grifoni, Alba. La Jolla Institute for Allergy and Immunology; Estados UnidosFil: Paul, Sinu. La Jolla Institute for Allergy and Immunology; Estados UnidosFil: Andreatta, Massimo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús). Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús); ArgentinaFil: Weiskopf, Daniela. La Jolla Institute for Allergy and Immunology; Estados UnidosFil: Sidney, John. La Jolla Institute for Allergy and Immunology; Estados UnidosFil: Nielsen, Morten. Technical University of Denmark; Dinamarca. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús). Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús); ArgentinaFil: Peters, Bjoern. University of California at San Diego; Estados Unidos. La Jolla Institute for Allergy and Immunology; Estados UnidosFil: Sette, Alessandro. University of California at San Diego; Estados Unidos. La Jolla Institute for Allergy and Immunology; Estados UnidosFrontiers Media S.A.2018-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/97108Dhanda, Sandeep Kumar; Karosiene, Edita; Edwards, Lindy; Grifoni, Alba; Paul, Sinu; et al.; Predicting HLA CD4 immunogenicity in human populations; Frontiers Media S.A.; Frontiers in Immunology; 9; 6-2018; 1-141664-3224CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.frontiersin.org/article/10.3389/fimmu.2018.01369/fullinfo:eu-repo/semantics/altIdentifier/doi/10.3389/fimmu.2018.01369info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:02:22Zoai:ri.conicet.gov.ar:11336/97108instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:02:22.93CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Predicting HLA CD4 immunogenicity in human populations |
title |
Predicting HLA CD4 immunogenicity in human populations |
spellingShingle |
Predicting HLA CD4 immunogenicity in human populations Dhanda, Sandeep Kumar BIOINFORMATICS EPITOPES HLA IMMUNODOMINANCE IMMUNOGENICITY PREDICTIONS TCR REPERTOIRE |
title_short |
Predicting HLA CD4 immunogenicity in human populations |
title_full |
Predicting HLA CD4 immunogenicity in human populations |
title_fullStr |
Predicting HLA CD4 immunogenicity in human populations |
title_full_unstemmed |
Predicting HLA CD4 immunogenicity in human populations |
title_sort |
Predicting HLA CD4 immunogenicity in human populations |
dc.creator.none.fl_str_mv |
Dhanda, Sandeep Kumar Karosiene, Edita Edwards, Lindy Grifoni, Alba Paul, Sinu Andreatta, Massimo Weiskopf, Daniela Sidney, John Nielsen, Morten Peters, Bjoern Sette, Alessandro |
author |
Dhanda, Sandeep Kumar |
author_facet |
Dhanda, Sandeep Kumar Karosiene, Edita Edwards, Lindy Grifoni, Alba Paul, Sinu Andreatta, Massimo Weiskopf, Daniela Sidney, John Nielsen, Morten Peters, Bjoern Sette, Alessandro |
author_role |
author |
author2 |
Karosiene, Edita Edwards, Lindy Grifoni, Alba Paul, Sinu Andreatta, Massimo Weiskopf, Daniela Sidney, John Nielsen, Morten Peters, Bjoern Sette, Alessandro |
author2_role |
author author author author author author author author author author |
dc.subject.none.fl_str_mv |
BIOINFORMATICS EPITOPES HLA IMMUNODOMINANCE IMMUNOGENICITY PREDICTIONS TCR REPERTOIRE |
topic |
BIOINFORMATICS EPITOPES HLA IMMUNODOMINANCE IMMUNOGENICITY PREDICTIONS TCR REPERTOIRE |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/3.3 https://purl.org/becyt/ford/3 |
dc.description.none.fl_txt_mv |
Background: Prediction of T cell immunogenicity is a topic of considerable interest, both in terms of basic understanding of the mechanisms of T cells responses and in terms of practical applications. HLA binding affinity is often used to predict T cell epitopes, since HLA binding affinity is a key requisite for human T cell immunogenicity. However, immunogenicity at the population it is complicated by the high level of variability of HLA molecules, potential other factors beyond HLA as well as the frequent lack of HLA typing data. To overcome those issues, we explored an alternative approach to identify the common characteristics able to distinguish immunogenic peptides from non-recognized peptides. Methods: Sets of dominant epitopes derived from peer-reviewed published papers were used in conjunction with negative peptides from the same experiments/donors to train neural networks and generate an "immunogenicity score." We also compared the performance of the immunogenicity score with previously described method for immunogenicity prediction based on HLA class II binding at the population level. Results: The immunogenicity score was validated on a series of independent datasets derived from the published literature, representing 57 independent studies where immunogenicity in human populations was assessed by testing overlapping peptides spanning different antigens. Overall, these testing datasets corresponded to over 2,000 peptides and tested in over 1,600 different human donors. The 7-allele method prediction and the immunogenicity score were associated with similar performance [average area under the ROC curve (AUC) values of 0.703 and 0.702, respectively] while the combined methods reached an average AUC of 0.725. This increase in average AUC value is significant compared with the immunogenicity score (p = 0.0135) and a strong trend toward significance is observed when compared to the 7-allele method (p = 0.0938). The new immunogenicity score method is now freely available using CD4 T cell immunogenicity prediction tool on the Immune Epitope Database website (http://tools.iedb.org/CD4episcore). Conclusion: The new immunogenicity score predicts CD4 T cell immunogenicity at the population level starting from protein sequences and with no need for HLA typing. Its efficacy has been validated in the context of different antigen sources, ethnicities, and disparate techniques for epitope identification. Fil: Dhanda, Sandeep Kumar. La Jolla Institute for Allergy and Immunology; Estados Unidos Fil: Karosiene, Edita. La Jolla Institute for Allergy and Immunology; Estados Unidos Fil: Edwards, Lindy. La Jolla Institute for Allergy and Immunology; Estados Unidos Fil: Grifoni, Alba. La Jolla Institute for Allergy and Immunology; Estados Unidos Fil: Paul, Sinu. La Jolla Institute for Allergy and Immunology; Estados Unidos Fil: Andreatta, Massimo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús). Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús); Argentina Fil: Weiskopf, Daniela. La Jolla Institute for Allergy and Immunology; Estados Unidos Fil: Sidney, John. La Jolla Institute for Allergy and Immunology; Estados Unidos Fil: Nielsen, Morten. Technical University of Denmark; Dinamarca. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús). Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús); Argentina Fil: Peters, Bjoern. University of California at San Diego; Estados Unidos. La Jolla Institute for Allergy and Immunology; Estados Unidos Fil: Sette, Alessandro. University of California at San Diego; Estados Unidos. La Jolla Institute for Allergy and Immunology; Estados Unidos |
description |
Background: Prediction of T cell immunogenicity is a topic of considerable interest, both in terms of basic understanding of the mechanisms of T cells responses and in terms of practical applications. HLA binding affinity is often used to predict T cell epitopes, since HLA binding affinity is a key requisite for human T cell immunogenicity. However, immunogenicity at the population it is complicated by the high level of variability of HLA molecules, potential other factors beyond HLA as well as the frequent lack of HLA typing data. To overcome those issues, we explored an alternative approach to identify the common characteristics able to distinguish immunogenic peptides from non-recognized peptides. Methods: Sets of dominant epitopes derived from peer-reviewed published papers were used in conjunction with negative peptides from the same experiments/donors to train neural networks and generate an "immunogenicity score." We also compared the performance of the immunogenicity score with previously described method for immunogenicity prediction based on HLA class II binding at the population level. Results: The immunogenicity score was validated on a series of independent datasets derived from the published literature, representing 57 independent studies where immunogenicity in human populations was assessed by testing overlapping peptides spanning different antigens. Overall, these testing datasets corresponded to over 2,000 peptides and tested in over 1,600 different human donors. The 7-allele method prediction and the immunogenicity score were associated with similar performance [average area under the ROC curve (AUC) values of 0.703 and 0.702, respectively] while the combined methods reached an average AUC of 0.725. This increase in average AUC value is significant compared with the immunogenicity score (p = 0.0135) and a strong trend toward significance is observed when compared to the 7-allele method (p = 0.0938). The new immunogenicity score method is now freely available using CD4 T cell immunogenicity prediction tool on the Immune Epitope Database website (http://tools.iedb.org/CD4episcore). Conclusion: The new immunogenicity score predicts CD4 T cell immunogenicity at the population level starting from protein sequences and with no need for HLA typing. Its efficacy has been validated in the context of different antigen sources, ethnicities, and disparate techniques for epitope identification. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/97108 Dhanda, Sandeep Kumar; Karosiene, Edita; Edwards, Lindy; Grifoni, Alba; Paul, Sinu; et al.; Predicting HLA CD4 immunogenicity in human populations; Frontiers Media S.A.; Frontiers in Immunology; 9; 6-2018; 1-14 1664-3224 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/97108 |
identifier_str_mv |
Dhanda, Sandeep Kumar; Karosiene, Edita; Edwards, Lindy; Grifoni, Alba; Paul, Sinu; et al.; Predicting HLA CD4 immunogenicity in human populations; Frontiers Media S.A.; Frontiers in Immunology; 9; 6-2018; 1-14 1664-3224 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.frontiersin.org/article/10.3389/fimmu.2018.01369/full info:eu-repo/semantics/altIdentifier/doi/10.3389/fimmu.2018.01369 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Frontiers Media S.A. |
publisher.none.fl_str_mv |
Frontiers Media S.A. |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269753470615552 |
score |
13.13397 |