Complex organic matter degradation by secondary consumers in chemolithoautotrophy-based subsurface geothermal ecosystems
- Autores
- Paul, Raegan; Rogers, Timothy J.; Fullerton, Kate M.; Selci, Matteo; Cascone, Martina; Stokes, Murray H.; Steen, Andrew D.; de Moor, J. Maarten; Chiodi, Agostina Laura; Stefánsson, Andri; Halldórsson, Sæmundur A.; Ramirez, Carlos J.; Jessen, Gerdhard L.; Barry, Peter H.; Cordone, Angelina; Giovannelli, Donato; Lloyd, Karen G.
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Microbial communities in terrestrial geothermal systems often contain chemolithoautotrophs with well-characterized distributions and metabolic capabilities. However, the extent to which organic matter produced by these chemolithoautotrophs supports heterotrophs remains largely unknown. Here we compared the abundance and activity of peptidases and carbohydrate active enzymes (CAZymes) that are predicted to be extracellular identified in metagenomic assemblies from 63 springs in the Central American and the Andean convergent margin (Argentinian backarc of the Central Volcanic Zone), as well as the plume-influenced spreading center in Iceland. All assemblies contain two orders of magnitude more peptidases than CAZymes, suggesting that the microorganisms more often use proteins for their carbon and/or nitrogen acquisition instead of complex sugars. The CAZy families in highest abundance are GH23 and CBM50, and the most abundant peptidase families are M23 and C26, all four of which degrade peptidoglycan found in bacterial cells. This implies that the heterotrophic community relies on autochthonous dead cell biomass, rather than allochthonous plant matter, for organic material. Enzymes involved in the degradation of cyanobacterial- and algal-derived compounds are in lower abundance at every site, with volcanic sites having more enzymes degrading cyanobacterial compounds and non-volcanic sites having more enzymes degrading algal compounds. Activity assays showed that many of these enzyme classes are active in these samples. High temperature sites (> 80°C) had similar extracellular carbon-degrading enzymes regardless of their province, suggesting a less well-developed population of secondary consumers at these sites, possibly connected with the limited extent of the subsurface biosphere in these high temperature sites. We conclude that in < 80°C springs, chemolithoautotrophic production supports heterotrophs capable of degrading a wide range of organic compounds that do not vary by geological province, even though the taxonomic and respiratory repertoire of chemolithoautotrophs and heterotrophs differ greatly across these regions.
Fil: Paul, Raegan. University of Tennessee; Estados Unidos
Fil: Rogers, Timothy J.. University of Tennessee; Estados Unidos
Fil: Fullerton, Kate M.. University of Tennessee; Estados Unidos
Fil: Selci, Matteo. Università degli Studi di Napoli Federico II; Italia
Fil: Cascone, Martina. Università degli Studi di Napoli Federico II; Italia
Fil: Stokes, Murray H.. University of Tennessee; Estados Unidos
Fil: Steen, Andrew D.. University of Tennessee; Estados Unidos
Fil: de Moor, J. Maarten. University of New Mexico; Estados Unidos
Fil: Chiodi, Agostina Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Bio y Geociencias del NOA. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Museo de Ciencias Naturales. Instituto de Bio y Geociencias del NOA; Argentina
Fil: Stefánsson, Andri. University of Iceland; Islandia
Fil: Halldórsson, Sæmundur A.. University of Iceland; Islandia
Fil: Ramirez, Carlos J.. Servicio Geológico Ambiental; Costa Rica
Fil: Jessen, Gerdhard L.. Universidad de Concepción; Chile
Fil: Barry, Peter H.. No especifíca;
Fil: Cordone, Angelina. Università degli Studi di Napoli Federico II; Italia
Fil: Giovannelli, Donato. Consiglio Nazionale delle Ricerche; Italia. Università degli Studi di Napoli Federico II; Italia
Fil: Lloyd, Karen G.. University of Tennessee; Estados Unidos - Materia
-
MICROBIAL COMMUNITIES
GEOTHERMAL FLUIDS
CONVERGENT MARGIN
CARBON BUDGET - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/230278
Ver los metadatos del registro completo
id |
CONICETDig_fbef05b52abcadca0a67fb0bc21e6a9d |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/230278 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Complex organic matter degradation by secondary consumers in chemolithoautotrophy-based subsurface geothermal ecosystemsPaul, RaeganRogers, Timothy J.Fullerton, Kate M.Selci, MatteoCascone, MartinaStokes, Murray H.Steen, Andrew D.de Moor, J. MaartenChiodi, Agostina LauraStefánsson, AndriHalldórsson, Sæmundur A.Ramirez, Carlos J.Jessen, Gerdhard L.Barry, Peter H.Cordone, AngelinaGiovannelli, DonatoLloyd, Karen G.MICROBIAL COMMUNITIESGEOTHERMAL FLUIDSCONVERGENT MARGINCARBON BUDGEThttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1Microbial communities in terrestrial geothermal systems often contain chemolithoautotrophs with well-characterized distributions and metabolic capabilities. However, the extent to which organic matter produced by these chemolithoautotrophs supports heterotrophs remains largely unknown. Here we compared the abundance and activity of peptidases and carbohydrate active enzymes (CAZymes) that are predicted to be extracellular identified in metagenomic assemblies from 63 springs in the Central American and the Andean convergent margin (Argentinian backarc of the Central Volcanic Zone), as well as the plume-influenced spreading center in Iceland. All assemblies contain two orders of magnitude more peptidases than CAZymes, suggesting that the microorganisms more often use proteins for their carbon and/or nitrogen acquisition instead of complex sugars. The CAZy families in highest abundance are GH23 and CBM50, and the most abundant peptidase families are M23 and C26, all four of which degrade peptidoglycan found in bacterial cells. This implies that the heterotrophic community relies on autochthonous dead cell biomass, rather than allochthonous plant matter, for organic material. Enzymes involved in the degradation of cyanobacterial- and algal-derived compounds are in lower abundance at every site, with volcanic sites having more enzymes degrading cyanobacterial compounds and non-volcanic sites having more enzymes degrading algal compounds. Activity assays showed that many of these enzyme classes are active in these samples. High temperature sites (> 80°C) had similar extracellular carbon-degrading enzymes regardless of their province, suggesting a less well-developed population of secondary consumers at these sites, possibly connected with the limited extent of the subsurface biosphere in these high temperature sites. We conclude that in < 80°C springs, chemolithoautotrophic production supports heterotrophs capable of degrading a wide range of organic compounds that do not vary by geological province, even though the taxonomic and respiratory repertoire of chemolithoautotrophs and heterotrophs differ greatly across these regions.Fil: Paul, Raegan. University of Tennessee; Estados UnidosFil: Rogers, Timothy J.. University of Tennessee; Estados UnidosFil: Fullerton, Kate M.. University of Tennessee; Estados UnidosFil: Selci, Matteo. Università degli Studi di Napoli Federico II; ItaliaFil: Cascone, Martina. Università degli Studi di Napoli Federico II; ItaliaFil: Stokes, Murray H.. University of Tennessee; Estados UnidosFil: Steen, Andrew D.. University of Tennessee; Estados UnidosFil: de Moor, J. Maarten. University of New Mexico; Estados UnidosFil: Chiodi, Agostina Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Bio y Geociencias del NOA. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Museo de Ciencias Naturales. Instituto de Bio y Geociencias del NOA; ArgentinaFil: Stefánsson, Andri. University of Iceland; IslandiaFil: Halldórsson, Sæmundur A.. University of Iceland; IslandiaFil: Ramirez, Carlos J.. Servicio Geológico Ambiental; Costa RicaFil: Jessen, Gerdhard L.. Universidad de Concepción; ChileFil: Barry, Peter H.. No especifíca;Fil: Cordone, Angelina. Università degli Studi di Napoli Federico II; ItaliaFil: Giovannelli, Donato. Consiglio Nazionale delle Ricerche; Italia. Università degli Studi di Napoli Federico II; ItaliaFil: Lloyd, Karen G.. University of Tennessee; Estados UnidosPublic Library of Science2023-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/230278Paul, Raegan; Rogers, Timothy J.; Fullerton, Kate M.; Selci, Matteo; Cascone, Martina; et al.; Complex organic matter degradation by secondary consumers in chemolithoautotrophy-based subsurface geothermal ecosystems; Public Library of Science; Plos One; 18; 8-2023; 1-261932-6203CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1371/journal.pone.0281277info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:03:33Zoai:ri.conicet.gov.ar:11336/230278instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:03:33.463CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Complex organic matter degradation by secondary consumers in chemolithoautotrophy-based subsurface geothermal ecosystems |
title |
Complex organic matter degradation by secondary consumers in chemolithoautotrophy-based subsurface geothermal ecosystems |
spellingShingle |
Complex organic matter degradation by secondary consumers in chemolithoautotrophy-based subsurface geothermal ecosystems Paul, Raegan MICROBIAL COMMUNITIES GEOTHERMAL FLUIDS CONVERGENT MARGIN CARBON BUDGET |
title_short |
Complex organic matter degradation by secondary consumers in chemolithoautotrophy-based subsurface geothermal ecosystems |
title_full |
Complex organic matter degradation by secondary consumers in chemolithoautotrophy-based subsurface geothermal ecosystems |
title_fullStr |
Complex organic matter degradation by secondary consumers in chemolithoautotrophy-based subsurface geothermal ecosystems |
title_full_unstemmed |
Complex organic matter degradation by secondary consumers in chemolithoautotrophy-based subsurface geothermal ecosystems |
title_sort |
Complex organic matter degradation by secondary consumers in chemolithoautotrophy-based subsurface geothermal ecosystems |
dc.creator.none.fl_str_mv |
Paul, Raegan Rogers, Timothy J. Fullerton, Kate M. Selci, Matteo Cascone, Martina Stokes, Murray H. Steen, Andrew D. de Moor, J. Maarten Chiodi, Agostina Laura Stefánsson, Andri Halldórsson, Sæmundur A. Ramirez, Carlos J. Jessen, Gerdhard L. Barry, Peter H. Cordone, Angelina Giovannelli, Donato Lloyd, Karen G. |
author |
Paul, Raegan |
author_facet |
Paul, Raegan Rogers, Timothy J. Fullerton, Kate M. Selci, Matteo Cascone, Martina Stokes, Murray H. Steen, Andrew D. de Moor, J. Maarten Chiodi, Agostina Laura Stefánsson, Andri Halldórsson, Sæmundur A. Ramirez, Carlos J. Jessen, Gerdhard L. Barry, Peter H. Cordone, Angelina Giovannelli, Donato Lloyd, Karen G. |
author_role |
author |
author2 |
Rogers, Timothy J. Fullerton, Kate M. Selci, Matteo Cascone, Martina Stokes, Murray H. Steen, Andrew D. de Moor, J. Maarten Chiodi, Agostina Laura Stefánsson, Andri Halldórsson, Sæmundur A. Ramirez, Carlos J. Jessen, Gerdhard L. Barry, Peter H. Cordone, Angelina Giovannelli, Donato Lloyd, Karen G. |
author2_role |
author author author author author author author author author author author author author author author author |
dc.subject.none.fl_str_mv |
MICROBIAL COMMUNITIES GEOTHERMAL FLUIDS CONVERGENT MARGIN CARBON BUDGET |
topic |
MICROBIAL COMMUNITIES GEOTHERMAL FLUIDS CONVERGENT MARGIN CARBON BUDGET |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Microbial communities in terrestrial geothermal systems often contain chemolithoautotrophs with well-characterized distributions and metabolic capabilities. However, the extent to which organic matter produced by these chemolithoautotrophs supports heterotrophs remains largely unknown. Here we compared the abundance and activity of peptidases and carbohydrate active enzymes (CAZymes) that are predicted to be extracellular identified in metagenomic assemblies from 63 springs in the Central American and the Andean convergent margin (Argentinian backarc of the Central Volcanic Zone), as well as the plume-influenced spreading center in Iceland. All assemblies contain two orders of magnitude more peptidases than CAZymes, suggesting that the microorganisms more often use proteins for their carbon and/or nitrogen acquisition instead of complex sugars. The CAZy families in highest abundance are GH23 and CBM50, and the most abundant peptidase families are M23 and C26, all four of which degrade peptidoglycan found in bacterial cells. This implies that the heterotrophic community relies on autochthonous dead cell biomass, rather than allochthonous plant matter, for organic material. Enzymes involved in the degradation of cyanobacterial- and algal-derived compounds are in lower abundance at every site, with volcanic sites having more enzymes degrading cyanobacterial compounds and non-volcanic sites having more enzymes degrading algal compounds. Activity assays showed that many of these enzyme classes are active in these samples. High temperature sites (> 80°C) had similar extracellular carbon-degrading enzymes regardless of their province, suggesting a less well-developed population of secondary consumers at these sites, possibly connected with the limited extent of the subsurface biosphere in these high temperature sites. We conclude that in < 80°C springs, chemolithoautotrophic production supports heterotrophs capable of degrading a wide range of organic compounds that do not vary by geological province, even though the taxonomic and respiratory repertoire of chemolithoautotrophs and heterotrophs differ greatly across these regions. Fil: Paul, Raegan. University of Tennessee; Estados Unidos Fil: Rogers, Timothy J.. University of Tennessee; Estados Unidos Fil: Fullerton, Kate M.. University of Tennessee; Estados Unidos Fil: Selci, Matteo. Università degli Studi di Napoli Federico II; Italia Fil: Cascone, Martina. Università degli Studi di Napoli Federico II; Italia Fil: Stokes, Murray H.. University of Tennessee; Estados Unidos Fil: Steen, Andrew D.. University of Tennessee; Estados Unidos Fil: de Moor, J. Maarten. University of New Mexico; Estados Unidos Fil: Chiodi, Agostina Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Bio y Geociencias del NOA. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Museo de Ciencias Naturales. Instituto de Bio y Geociencias del NOA; Argentina Fil: Stefánsson, Andri. University of Iceland; Islandia Fil: Halldórsson, Sæmundur A.. University of Iceland; Islandia Fil: Ramirez, Carlos J.. Servicio Geológico Ambiental; Costa Rica Fil: Jessen, Gerdhard L.. Universidad de Concepción; Chile Fil: Barry, Peter H.. No especifíca; Fil: Cordone, Angelina. Università degli Studi di Napoli Federico II; Italia Fil: Giovannelli, Donato. Consiglio Nazionale delle Ricerche; Italia. Università degli Studi di Napoli Federico II; Italia Fil: Lloyd, Karen G.. University of Tennessee; Estados Unidos |
description |
Microbial communities in terrestrial geothermal systems often contain chemolithoautotrophs with well-characterized distributions and metabolic capabilities. However, the extent to which organic matter produced by these chemolithoautotrophs supports heterotrophs remains largely unknown. Here we compared the abundance and activity of peptidases and carbohydrate active enzymes (CAZymes) that are predicted to be extracellular identified in metagenomic assemblies from 63 springs in the Central American and the Andean convergent margin (Argentinian backarc of the Central Volcanic Zone), as well as the plume-influenced spreading center in Iceland. All assemblies contain two orders of magnitude more peptidases than CAZymes, suggesting that the microorganisms more often use proteins for their carbon and/or nitrogen acquisition instead of complex sugars. The CAZy families in highest abundance are GH23 and CBM50, and the most abundant peptidase families are M23 and C26, all four of which degrade peptidoglycan found in bacterial cells. This implies that the heterotrophic community relies on autochthonous dead cell biomass, rather than allochthonous plant matter, for organic material. Enzymes involved in the degradation of cyanobacterial- and algal-derived compounds are in lower abundance at every site, with volcanic sites having more enzymes degrading cyanobacterial compounds and non-volcanic sites having more enzymes degrading algal compounds. Activity assays showed that many of these enzyme classes are active in these samples. High temperature sites (> 80°C) had similar extracellular carbon-degrading enzymes regardless of their province, suggesting a less well-developed population of secondary consumers at these sites, possibly connected with the limited extent of the subsurface biosphere in these high temperature sites. We conclude that in < 80°C springs, chemolithoautotrophic production supports heterotrophs capable of degrading a wide range of organic compounds that do not vary by geological province, even though the taxonomic and respiratory repertoire of chemolithoautotrophs and heterotrophs differ greatly across these regions. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/230278 Paul, Raegan; Rogers, Timothy J.; Fullerton, Kate M.; Selci, Matteo; Cascone, Martina; et al.; Complex organic matter degradation by secondary consumers in chemolithoautotrophy-based subsurface geothermal ecosystems; Public Library of Science; Plos One; 18; 8-2023; 1-26 1932-6203 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/230278 |
identifier_str_mv |
Paul, Raegan; Rogers, Timothy J.; Fullerton, Kate M.; Selci, Matteo; Cascone, Martina; et al.; Complex organic matter degradation by secondary consumers in chemolithoautotrophy-based subsurface geothermal ecosystems; Public Library of Science; Plos One; 18; 8-2023; 1-26 1932-6203 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1371/journal.pone.0281277 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Public Library of Science |
publisher.none.fl_str_mv |
Public Library of Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613853159096320 |
score |
13.070432 |