Electronic coherences and vibrational wave-packets in single molecules studied with femtosecond phase-controlled spectroscopy

Autores
Hildner, Richard; Brinks, Daan; Stefani, Fernando Daniel; van Hulst, Niek F.
Año de publicación
2011
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Employing femtosecond pulse-shaping techniques we investigate ultrafast, coherent and incoherent dynamics in single molecules at room temperature. In first experiments single molecules are excited into their purely electronic 0–0 transition by phase-locked double-pulse sequences with pulse durations of 75 fs and 20 nm spectral band width. Their femtosecond kinetics can then be understood in terms of a 2-level system and modelled with the optical Bloch equations. We find that we observe the coherence decay in single molecules, and the purely electronic dephasing times can be retrieved directly in the time domain. In addition, the Rabi-frequencies and thus the transition dipole moments of single molecules are determined from these data. Upon excitation of single molecules into a vibrational level of the electronically excited state also incoherent intra-molecular vibrational relaxation is recorded. Increasing the spectral band width of the excitation pulses to up to 120 nm (resulting in a transform-limited pulse width of 15 fs) coherent superpositions of excited state vibrational modes, i.e. vibrational wave packets, are excited. The wave-packet oscillations in the excited state potential energy surface are followed in time by a phase-controlled pump–probe scheme, which permits to record wave packet interference, and to determine the energies of vibrational modes and their coupling strengths to the electronic transition.
Fil: Hildner, Richard. Institut de Ciencies Fotoniques; España
Fil: Brinks, Daan. Institut de Ciencies Fotoniques; España
Fil: Stefani, Fernando Daniel. Institut de Ciencies Fotoniques; España. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Bionanociencias "Elizabeth Jares Erijman"; Argentina
Fil: van Hulst, Niek F.. Institut de Ciencies Fotoniques; España
Materia
single molecule
ultrafast
coherent control
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/101385

id CONICETDig_fa7a8d85a198ed463e631cee32a76764
oai_identifier_str oai:ri.conicet.gov.ar:11336/101385
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Electronic coherences and vibrational wave-packets in single molecules studied with femtosecond phase-controlled spectroscopyHildner, RichardBrinks, DaanStefani, Fernando Danielvan Hulst, Niek F.single moleculeultrafastcoherent controlhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Employing femtosecond pulse-shaping techniques we investigate ultrafast, coherent and incoherent dynamics in single molecules at room temperature. In first experiments single molecules are excited into their purely electronic 0–0 transition by phase-locked double-pulse sequences with pulse durations of 75 fs and 20 nm spectral band width. Their femtosecond kinetics can then be understood in terms of a 2-level system and modelled with the optical Bloch equations. We find that we observe the coherence decay in single molecules, and the purely electronic dephasing times can be retrieved directly in the time domain. In addition, the Rabi-frequencies and thus the transition dipole moments of single molecules are determined from these data. Upon excitation of single molecules into a vibrational level of the electronically excited state also incoherent intra-molecular vibrational relaxation is recorded. Increasing the spectral band width of the excitation pulses to up to 120 nm (resulting in a transform-limited pulse width of 15 fs) coherent superpositions of excited state vibrational modes, i.e. vibrational wave packets, are excited. The wave-packet oscillations in the excited state potential energy surface are followed in time by a phase-controlled pump–probe scheme, which permits to record wave packet interference, and to determine the energies of vibrational modes and their coupling strengths to the electronic transition.Fil: Hildner, Richard. Institut de Ciencies Fotoniques; EspañaFil: Brinks, Daan. Institut de Ciencies Fotoniques; EspañaFil: Stefani, Fernando Daniel. Institut de Ciencies Fotoniques; España. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Bionanociencias "Elizabeth Jares Erijman"; ArgentinaFil: van Hulst, Niek F.. Institut de Ciencies Fotoniques; EspañaRoyal Society of Chemistry2011-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/101385Hildner, Richard; Brinks, Daan; Stefani, Fernando Daniel; van Hulst, Niek F.; Electronic coherences and vibrational wave-packets in single molecules studied with femtosecond phase-controlled spectroscopy; Royal Society of Chemistry; Physical Chemistry Chemical Physics; 13; 5; 1-2011; 1888-18941463-9076CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://pubs.rsc.org/en/content/articlelanding/2011/cp/c0cp02231d/unauth#!divAbstractinfo:eu-repo/semantics/altIdentifier/doi/10.1039/C0CP02231Dinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:39:12Zoai:ri.conicet.gov.ar:11336/101385instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:39:12.999CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Electronic coherences and vibrational wave-packets in single molecules studied with femtosecond phase-controlled spectroscopy
title Electronic coherences and vibrational wave-packets in single molecules studied with femtosecond phase-controlled spectroscopy
spellingShingle Electronic coherences and vibrational wave-packets in single molecules studied with femtosecond phase-controlled spectroscopy
Hildner, Richard
single molecule
ultrafast
coherent control
title_short Electronic coherences and vibrational wave-packets in single molecules studied with femtosecond phase-controlled spectroscopy
title_full Electronic coherences and vibrational wave-packets in single molecules studied with femtosecond phase-controlled spectroscopy
title_fullStr Electronic coherences and vibrational wave-packets in single molecules studied with femtosecond phase-controlled spectroscopy
title_full_unstemmed Electronic coherences and vibrational wave-packets in single molecules studied with femtosecond phase-controlled spectroscopy
title_sort Electronic coherences and vibrational wave-packets in single molecules studied with femtosecond phase-controlled spectroscopy
dc.creator.none.fl_str_mv Hildner, Richard
Brinks, Daan
Stefani, Fernando Daniel
van Hulst, Niek F.
author Hildner, Richard
author_facet Hildner, Richard
Brinks, Daan
Stefani, Fernando Daniel
van Hulst, Niek F.
author_role author
author2 Brinks, Daan
Stefani, Fernando Daniel
van Hulst, Niek F.
author2_role author
author
author
dc.subject.none.fl_str_mv single molecule
ultrafast
coherent control
topic single molecule
ultrafast
coherent control
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Employing femtosecond pulse-shaping techniques we investigate ultrafast, coherent and incoherent dynamics in single molecules at room temperature. In first experiments single molecules are excited into their purely electronic 0–0 transition by phase-locked double-pulse sequences with pulse durations of 75 fs and 20 nm spectral band width. Their femtosecond kinetics can then be understood in terms of a 2-level system and modelled with the optical Bloch equations. We find that we observe the coherence decay in single molecules, and the purely electronic dephasing times can be retrieved directly in the time domain. In addition, the Rabi-frequencies and thus the transition dipole moments of single molecules are determined from these data. Upon excitation of single molecules into a vibrational level of the electronically excited state also incoherent intra-molecular vibrational relaxation is recorded. Increasing the spectral band width of the excitation pulses to up to 120 nm (resulting in a transform-limited pulse width of 15 fs) coherent superpositions of excited state vibrational modes, i.e. vibrational wave packets, are excited. The wave-packet oscillations in the excited state potential energy surface are followed in time by a phase-controlled pump–probe scheme, which permits to record wave packet interference, and to determine the energies of vibrational modes and their coupling strengths to the electronic transition.
Fil: Hildner, Richard. Institut de Ciencies Fotoniques; España
Fil: Brinks, Daan. Institut de Ciencies Fotoniques; España
Fil: Stefani, Fernando Daniel. Institut de Ciencies Fotoniques; España. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Bionanociencias "Elizabeth Jares Erijman"; Argentina
Fil: van Hulst, Niek F.. Institut de Ciencies Fotoniques; España
description Employing femtosecond pulse-shaping techniques we investigate ultrafast, coherent and incoherent dynamics in single molecules at room temperature. In first experiments single molecules are excited into their purely electronic 0–0 transition by phase-locked double-pulse sequences with pulse durations of 75 fs and 20 nm spectral band width. Their femtosecond kinetics can then be understood in terms of a 2-level system and modelled with the optical Bloch equations. We find that we observe the coherence decay in single molecules, and the purely electronic dephasing times can be retrieved directly in the time domain. In addition, the Rabi-frequencies and thus the transition dipole moments of single molecules are determined from these data. Upon excitation of single molecules into a vibrational level of the electronically excited state also incoherent intra-molecular vibrational relaxation is recorded. Increasing the spectral band width of the excitation pulses to up to 120 nm (resulting in a transform-limited pulse width of 15 fs) coherent superpositions of excited state vibrational modes, i.e. vibrational wave packets, are excited. The wave-packet oscillations in the excited state potential energy surface are followed in time by a phase-controlled pump–probe scheme, which permits to record wave packet interference, and to determine the energies of vibrational modes and their coupling strengths to the electronic transition.
publishDate 2011
dc.date.none.fl_str_mv 2011-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/101385
Hildner, Richard; Brinks, Daan; Stefani, Fernando Daniel; van Hulst, Niek F.; Electronic coherences and vibrational wave-packets in single molecules studied with femtosecond phase-controlled spectroscopy; Royal Society of Chemistry; Physical Chemistry Chemical Physics; 13; 5; 1-2011; 1888-1894
1463-9076
CONICET Digital
CONICET
url http://hdl.handle.net/11336/101385
identifier_str_mv Hildner, Richard; Brinks, Daan; Stefani, Fernando Daniel; van Hulst, Niek F.; Electronic coherences and vibrational wave-packets in single molecules studied with femtosecond phase-controlled spectroscopy; Royal Society of Chemistry; Physical Chemistry Chemical Physics; 13; 5; 1-2011; 1888-1894
1463-9076
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://pubs.rsc.org/en/content/articlelanding/2011/cp/c0cp02231d/unauth#!divAbstract
info:eu-repo/semantics/altIdentifier/doi/10.1039/C0CP02231D
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Royal Society of Chemistry
publisher.none.fl_str_mv Royal Society of Chemistry
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613239977017344
score 13.070432