Lessons from being challenged by COVID-19
- Autores
- Tagliazucchi, Enzo Rodolfo; Balenzuela, Pablo; Travizano, M.; Mindlin, Bernardo Gabriel; Mininni, Pablo Daniel
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We present results of different approaches to model the evolution of the COVID-19 epidemic in Argentina, with a special focus onthe megacity conformed by the city of Buenos Aires and its metropolitan area, including a total of 41 districts with over 13 millioninhabitants. We first highlight the relevance of interpreting the early stage of the epidemic in light of incoming infectious travelersfrom abroad. Next, we critically evaluate certain proposed solutions to contain the epidemic based on instantaneous modificationsof the reproductive number. Finally, we build increasingly complex and realistic models, ranging from simple homogeneous modelsused to estimate local reproduction numbers, to fully coupled inhomogeneous (deterministic or stochastic) models incorporatingmobility estimates from cell phone location data. The models are capable of producing forecasts highly consistent with the officialnumber of cases with minimal parameter fitting and fine-tuning. We discuss the strengths and limitations of the proposed models,focusing on the validity of different necessary first approximations, and caution future modeling efforts to exercise great care in theinterpretation of long-term forecasts, and in the adoption of non-pharmaceutical interventions backed by numerical simulations.
Fil: Tagliazucchi, Enzo Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Balenzuela, Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Travizano, M.. Grandata Labs; Estados Unidos
Fil: Mindlin, Bernardo Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Mininni, Pablo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina - Materia
-
COVID-19
EPIDEMIOLOGY
DYNAMICS
PANDEMIA - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/109068
Ver los metadatos del registro completo
| id |
CONICETDig_fa0e623a09ab50bc311ca530ae5bc4f3 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/109068 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Lessons from being challenged by COVID-19Tagliazucchi, Enzo RodolfoBalenzuela, PabloTravizano, M.Mindlin, Bernardo GabrielMininni, Pablo DanielCOVID-19EPIDEMIOLOGYDYNAMICSPANDEMIAhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We present results of different approaches to model the evolution of the COVID-19 epidemic in Argentina, with a special focus onthe megacity conformed by the city of Buenos Aires and its metropolitan area, including a total of 41 districts with over 13 millioninhabitants. We first highlight the relevance of interpreting the early stage of the epidemic in light of incoming infectious travelersfrom abroad. Next, we critically evaluate certain proposed solutions to contain the epidemic based on instantaneous modificationsof the reproductive number. Finally, we build increasingly complex and realistic models, ranging from simple homogeneous modelsused to estimate local reproduction numbers, to fully coupled inhomogeneous (deterministic or stochastic) models incorporatingmobility estimates from cell phone location data. The models are capable of producing forecasts highly consistent with the officialnumber of cases with minimal parameter fitting and fine-tuning. We discuss the strengths and limitations of the proposed models,focusing on the validity of different necessary first approximations, and caution future modeling efforts to exercise great care in theinterpretation of long-term forecasts, and in the adoption of non-pharmaceutical interventions backed by numerical simulations.Fil: Tagliazucchi, Enzo Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Balenzuela, Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Travizano, M.. Grandata Labs; Estados UnidosFil: Mindlin, Bernardo Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Mininni, Pablo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaPergamon-Elsevier Science Ltd2020-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/109068Tagliazucchi, Enzo Rodolfo; Balenzuela, Pablo; Travizano, M.; Mindlin, Bernardo Gabriel; Mininni, Pablo Daniel; Lessons from being challenged by COVID-19; Pergamon-Elsevier Science Ltd; Chaos, Solitons And Fractals; 137; 8-2020; 1-15; 1099230960-0779CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.chaos.2020.109923info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0960077920303180info:eu-repo/semantics/altIdentifier/url/https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7245296/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T12:10:58Zoai:ri.conicet.gov.ar:11336/109068instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 12:10:58.627CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Lessons from being challenged by COVID-19 |
| title |
Lessons from being challenged by COVID-19 |
| spellingShingle |
Lessons from being challenged by COVID-19 Tagliazucchi, Enzo Rodolfo COVID-19 EPIDEMIOLOGY DYNAMICS PANDEMIA |
| title_short |
Lessons from being challenged by COVID-19 |
| title_full |
Lessons from being challenged by COVID-19 |
| title_fullStr |
Lessons from being challenged by COVID-19 |
| title_full_unstemmed |
Lessons from being challenged by COVID-19 |
| title_sort |
Lessons from being challenged by COVID-19 |
| dc.creator.none.fl_str_mv |
Tagliazucchi, Enzo Rodolfo Balenzuela, Pablo Travizano, M. Mindlin, Bernardo Gabriel Mininni, Pablo Daniel |
| author |
Tagliazucchi, Enzo Rodolfo |
| author_facet |
Tagliazucchi, Enzo Rodolfo Balenzuela, Pablo Travizano, M. Mindlin, Bernardo Gabriel Mininni, Pablo Daniel |
| author_role |
author |
| author2 |
Balenzuela, Pablo Travizano, M. Mindlin, Bernardo Gabriel Mininni, Pablo Daniel |
| author2_role |
author author author author |
| dc.subject.none.fl_str_mv |
COVID-19 EPIDEMIOLOGY DYNAMICS PANDEMIA |
| topic |
COVID-19 EPIDEMIOLOGY DYNAMICS PANDEMIA |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
We present results of different approaches to model the evolution of the COVID-19 epidemic in Argentina, with a special focus onthe megacity conformed by the city of Buenos Aires and its metropolitan area, including a total of 41 districts with over 13 millioninhabitants. We first highlight the relevance of interpreting the early stage of the epidemic in light of incoming infectious travelersfrom abroad. Next, we critically evaluate certain proposed solutions to contain the epidemic based on instantaneous modificationsof the reproductive number. Finally, we build increasingly complex and realistic models, ranging from simple homogeneous modelsused to estimate local reproduction numbers, to fully coupled inhomogeneous (deterministic or stochastic) models incorporatingmobility estimates from cell phone location data. The models are capable of producing forecasts highly consistent with the officialnumber of cases with minimal parameter fitting and fine-tuning. We discuss the strengths and limitations of the proposed models,focusing on the validity of different necessary first approximations, and caution future modeling efforts to exercise great care in theinterpretation of long-term forecasts, and in the adoption of non-pharmaceutical interventions backed by numerical simulations. Fil: Tagliazucchi, Enzo Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina Fil: Balenzuela, Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina Fil: Travizano, M.. Grandata Labs; Estados Unidos Fil: Mindlin, Bernardo Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina Fil: Mininni, Pablo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina |
| description |
We present results of different approaches to model the evolution of the COVID-19 epidemic in Argentina, with a special focus onthe megacity conformed by the city of Buenos Aires and its metropolitan area, including a total of 41 districts with over 13 millioninhabitants. We first highlight the relevance of interpreting the early stage of the epidemic in light of incoming infectious travelersfrom abroad. Next, we critically evaluate certain proposed solutions to contain the epidemic based on instantaneous modificationsof the reproductive number. Finally, we build increasingly complex and realistic models, ranging from simple homogeneous modelsused to estimate local reproduction numbers, to fully coupled inhomogeneous (deterministic or stochastic) models incorporatingmobility estimates from cell phone location data. The models are capable of producing forecasts highly consistent with the officialnumber of cases with minimal parameter fitting and fine-tuning. We discuss the strengths and limitations of the proposed models,focusing on the validity of different necessary first approximations, and caution future modeling efforts to exercise great care in theinterpretation of long-term forecasts, and in the adoption of non-pharmaceutical interventions backed by numerical simulations. |
| publishDate |
2020 |
| dc.date.none.fl_str_mv |
2020-08 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/109068 Tagliazucchi, Enzo Rodolfo; Balenzuela, Pablo; Travizano, M.; Mindlin, Bernardo Gabriel; Mininni, Pablo Daniel; Lessons from being challenged by COVID-19; Pergamon-Elsevier Science Ltd; Chaos, Solitons And Fractals; 137; 8-2020; 1-15; 109923 0960-0779 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/109068 |
| identifier_str_mv |
Tagliazucchi, Enzo Rodolfo; Balenzuela, Pablo; Travizano, M.; Mindlin, Bernardo Gabriel; Mininni, Pablo Daniel; Lessons from being challenged by COVID-19; Pergamon-Elsevier Science Ltd; Chaos, Solitons And Fractals; 137; 8-2020; 1-15; 109923 0960-0779 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.chaos.2020.109923 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0960077920303180 info:eu-repo/semantics/altIdentifier/url/https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7245296/ |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
| publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846782498717040640 |
| score |
12.982451 |