Materials for hydrogen storage

Autores
Robina Merlino, Ariana Melisa; Pronsato, Maria Estela
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In the present article two systems studied theoretically in the Physics De-partment of the Universidad Nacional del Sur are presented. Both are related to the Physics of Ma-terials, more specifically to intermetallic hydrogen storage materials, and have been developed using self-consistent Density Functional Theory (DFT) calculations. DFT is a phenomenally successful approach to finding solutions to the fundamental expression that describes the quantum behaviour of atoms and molecules, the Schrödinger equation, in settings of practical value.Laves phases, under the representative forms cubic MgCu2 (C15) and hexagonal MgZn2 (C14) and MgNi2 (C36), have been extensively studied due to their promising behavior as solid state hy-drogen storage materials, ease of synthesis by the conventional cast methods, flexibility in tailoring the thermodynamic properties and good absorp-tion/desorption kinetics and cycle life. However, they cannot be used for technological applications because of its too strong hydride stability at room temperature.In this work we studied the hydrogen absorp-tion for Zr(Cr0.5Ni0.5)2, isostructural with the MgZn2 Laves phase, with the aim to find the most energetically favorable interstitial sites to locate hydrogen. Bulk modulus and volume cell changes due to the hydrogenation process were also ana-lyzed for this phase.According to literature, the most stable were the A2B2 sites, with an absorption energy average of -0.25 eV, followed by the AB3 sites. Bulk Modu-lus fluctuated in the range of 150 and165 GPa.
Fil: Robina Merlino, Ariana Melisa. Universidad Nacional de la Patagonia "San Juan Bosco"; Argentina
Fil: Pronsato, Maria Estela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; Argentina
Materia
LAVES PHASES
HYDROGEN ABSORPTION
DFT
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/96724

id CONICETDig_f9752973bbdf0de18d6ec7cf47d55080
oai_identifier_str oai:ri.conicet.gov.ar:11336/96724
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Materials for hydrogen storageRobina Merlino, Ariana MelisaPronsato, Maria EstelaLAVES PHASESHYDROGEN ABSORPTIONDFThttps://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2In the present article two systems studied theoretically in the Physics De-partment of the Universidad Nacional del Sur are presented. Both are related to the Physics of Ma-terials, more specifically to intermetallic hydrogen storage materials, and have been developed using self-consistent Density Functional Theory (DFT) calculations. DFT is a phenomenally successful approach to finding solutions to the fundamental expression that describes the quantum behaviour of atoms and molecules, the Schrödinger equation, in settings of practical value.Laves phases, under the representative forms cubic MgCu2 (C15) and hexagonal MgZn2 (C14) and MgNi2 (C36), have been extensively studied due to their promising behavior as solid state hy-drogen storage materials, ease of synthesis by the conventional cast methods, flexibility in tailoring the thermodynamic properties and good absorp-tion/desorption kinetics and cycle life. However, they cannot be used for technological applications because of its too strong hydride stability at room temperature.In this work we studied the hydrogen absorp-tion for Zr(Cr0.5Ni0.5)2, isostructural with the MgZn2 Laves phase, with the aim to find the most energetically favorable interstitial sites to locate hydrogen. Bulk modulus and volume cell changes due to the hydrogenation process were also ana-lyzed for this phase.According to literature, the most stable were the A2B2 sites, with an absorption energy average of -0.25 eV, followed by the AB3 sites. Bulk Modu-lus fluctuated in the range of 150 and165 GPa.Fil: Robina Merlino, Ariana Melisa. Universidad Nacional de la Patagonia "San Juan Bosco"; ArgentinaFil: Pronsato, Maria Estela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; ArgentinaConsejo Federal de Decanos de Ingeniería de la República Argentina2015-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/96724Robina Merlino, Ariana Melisa; Pronsato, Maria Estela; Materials for hydrogen storage; Consejo Federal de Decanos de Ingeniería de la República Argentina; Revista Argentina de Ingeniería; 6; 11-2015; 41-492314-0925CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://radi.org.ar/wp-content/uploads/2016/10/11-2.pdfinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:29:08Zoai:ri.conicet.gov.ar:11336/96724instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:29:08.85CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Materials for hydrogen storage
title Materials for hydrogen storage
spellingShingle Materials for hydrogen storage
Robina Merlino, Ariana Melisa
LAVES PHASES
HYDROGEN ABSORPTION
DFT
title_short Materials for hydrogen storage
title_full Materials for hydrogen storage
title_fullStr Materials for hydrogen storage
title_full_unstemmed Materials for hydrogen storage
title_sort Materials for hydrogen storage
dc.creator.none.fl_str_mv Robina Merlino, Ariana Melisa
Pronsato, Maria Estela
author Robina Merlino, Ariana Melisa
author_facet Robina Merlino, Ariana Melisa
Pronsato, Maria Estela
author_role author
author2 Pronsato, Maria Estela
author2_role author
dc.subject.none.fl_str_mv LAVES PHASES
HYDROGEN ABSORPTION
DFT
topic LAVES PHASES
HYDROGEN ABSORPTION
DFT
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.5
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv In the present article two systems studied theoretically in the Physics De-partment of the Universidad Nacional del Sur are presented. Both are related to the Physics of Ma-terials, more specifically to intermetallic hydrogen storage materials, and have been developed using self-consistent Density Functional Theory (DFT) calculations. DFT is a phenomenally successful approach to finding solutions to the fundamental expression that describes the quantum behaviour of atoms and molecules, the Schrödinger equation, in settings of practical value.Laves phases, under the representative forms cubic MgCu2 (C15) and hexagonal MgZn2 (C14) and MgNi2 (C36), have been extensively studied due to their promising behavior as solid state hy-drogen storage materials, ease of synthesis by the conventional cast methods, flexibility in tailoring the thermodynamic properties and good absorp-tion/desorption kinetics and cycle life. However, they cannot be used for technological applications because of its too strong hydride stability at room temperature.In this work we studied the hydrogen absorp-tion for Zr(Cr0.5Ni0.5)2, isostructural with the MgZn2 Laves phase, with the aim to find the most energetically favorable interstitial sites to locate hydrogen. Bulk modulus and volume cell changes due to the hydrogenation process were also ana-lyzed for this phase.According to literature, the most stable were the A2B2 sites, with an absorption energy average of -0.25 eV, followed by the AB3 sites. Bulk Modu-lus fluctuated in the range of 150 and165 GPa.
Fil: Robina Merlino, Ariana Melisa. Universidad Nacional de la Patagonia "San Juan Bosco"; Argentina
Fil: Pronsato, Maria Estela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; Argentina
description In the present article two systems studied theoretically in the Physics De-partment of the Universidad Nacional del Sur are presented. Both are related to the Physics of Ma-terials, more specifically to intermetallic hydrogen storage materials, and have been developed using self-consistent Density Functional Theory (DFT) calculations. DFT is a phenomenally successful approach to finding solutions to the fundamental expression that describes the quantum behaviour of atoms and molecules, the Schrödinger equation, in settings of practical value.Laves phases, under the representative forms cubic MgCu2 (C15) and hexagonal MgZn2 (C14) and MgNi2 (C36), have been extensively studied due to their promising behavior as solid state hy-drogen storage materials, ease of synthesis by the conventional cast methods, flexibility in tailoring the thermodynamic properties and good absorp-tion/desorption kinetics and cycle life. However, they cannot be used for technological applications because of its too strong hydride stability at room temperature.In this work we studied the hydrogen absorp-tion for Zr(Cr0.5Ni0.5)2, isostructural with the MgZn2 Laves phase, with the aim to find the most energetically favorable interstitial sites to locate hydrogen. Bulk modulus and volume cell changes due to the hydrogenation process were also ana-lyzed for this phase.According to literature, the most stable were the A2B2 sites, with an absorption energy average of -0.25 eV, followed by the AB3 sites. Bulk Modu-lus fluctuated in the range of 150 and165 GPa.
publishDate 2015
dc.date.none.fl_str_mv 2015-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/96724
Robina Merlino, Ariana Melisa; Pronsato, Maria Estela; Materials for hydrogen storage; Consejo Federal de Decanos de Ingeniería de la República Argentina; Revista Argentina de Ingeniería; 6; 11-2015; 41-49
2314-0925
CONICET Digital
CONICET
url http://hdl.handle.net/11336/96724
identifier_str_mv Robina Merlino, Ariana Melisa; Pronsato, Maria Estela; Materials for hydrogen storage; Consejo Federal de Decanos de Ingeniería de la República Argentina; Revista Argentina de Ingeniería; 6; 11-2015; 41-49
2314-0925
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://radi.org.ar/wp-content/uploads/2016/10/11-2.pdf
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Consejo Federal de Decanos de Ingeniería de la República Argentina
publisher.none.fl_str_mv Consejo Federal de Decanos de Ingeniería de la República Argentina
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614296873467904
score 13.070432