Predictive models of minimum temperatures for the south of Buenos Aires province
- Autores
- Hernandez, Gabriela Lorena; Muller, Gabriela Viviana; Villacampa, Yolanda; Navarro González, Francisco José; Aragonés, Luis
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Depending on the time of development of a crop temperature below 0 °C can cause damage to the plant, altering its development and subsequent yield. Since frosts are identified from the minimum air temperature, the objective of this research paper is to generate forecast -(predictive) models at 1, 3 and 5 days of the minimum daily temperature (Tmin) for Bahía Blanca city. Non-linear numerical models are generated using artificial neural networks and geometric models of finite elements. Six independent variables are used: temperature and dew point temperature at meteorological shelter level, relative humidity, cloudiness observed above the station, wind speed and direction measured at 10 m altitude. Data have been obtained between May and September from 1956 to 2015. Once the available data had been analyzed, this period was reduced to 2007–2015. For the selection of the most suitable model, the correlation coefficient of Pearson (R), the determination coefficient (R2) and the Mean Absolute Error (MAE) are evaluated. The results of the study determine that the geometric model of finite elements with 4 variables, over 9 years (2007–2015) and separated by the season of the year is the one that presents better adjustment in the forecast of Tmin with up to 5 days of anticipation.
Fil: Hernandez, Gabriela Lorena. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Agronomía; Argentina
Fil: Muller, Gabriela Viviana. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Centro de Estudios de Variabilidad y Cambio Climático; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina
Fil: Villacampa, Yolanda. Universidad de Alicante; España
Fil: Navarro González, Francisco José. Universidad de Alicante; España
Fil: Aragonés, Luis. Universidad de Alicante; España - Materia
-
AGRICULTURE
CROP TEMPERATURE
FINITE ELEMENTS
PREDICTIVE MODELS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/149607
Ver los metadatos del registro completo
id |
CONICETDig_f94fcc6bac19743db81ab862694268ee |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/149607 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Predictive models of minimum temperatures for the south of Buenos Aires provinceHernandez, Gabriela LorenaMuller, Gabriela VivianaVillacampa, YolandaNavarro González, Francisco JoséAragonés, LuisAGRICULTURECROP TEMPERATUREFINITE ELEMENTSPREDICTIVE MODELShttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1Depending on the time of development of a crop temperature below 0 °C can cause damage to the plant, altering its development and subsequent yield. Since frosts are identified from the minimum air temperature, the objective of this research paper is to generate forecast -(predictive) models at 1, 3 and 5 days of the minimum daily temperature (Tmin) for Bahía Blanca city. Non-linear numerical models are generated using artificial neural networks and geometric models of finite elements. Six independent variables are used: temperature and dew point temperature at meteorological shelter level, relative humidity, cloudiness observed above the station, wind speed and direction measured at 10 m altitude. Data have been obtained between May and September from 1956 to 2015. Once the available data had been analyzed, this period was reduced to 2007–2015. For the selection of the most suitable model, the correlation coefficient of Pearson (R), the determination coefficient (R2) and the Mean Absolute Error (MAE) are evaluated. The results of the study determine that the geometric model of finite elements with 4 variables, over 9 years (2007–2015) and separated by the season of the year is the one that presents better adjustment in the forecast of Tmin with up to 5 days of anticipation.Fil: Hernandez, Gabriela Lorena. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Agronomía; ArgentinaFil: Muller, Gabriela Viviana. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Centro de Estudios de Variabilidad y Cambio Climático; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; ArgentinaFil: Villacampa, Yolanda. Universidad de Alicante; EspañaFil: Navarro González, Francisco José. Universidad de Alicante; EspañaFil: Aragonés, Luis. Universidad de Alicante; EspañaElsevier2020-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/149607Hernandez, Gabriela Lorena; Muller, Gabriela Viviana; Villacampa, Yolanda; Navarro González, Francisco José; Aragonés, Luis; Predictive models of minimum temperatures for the south of Buenos Aires province; Elsevier; Science of the Total Environment; 699; 1-2020; 1-420048-9697CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0048969719342639info:eu-repo/semantics/altIdentifier/doi/10.1016/j.scitotenv.2019.134280info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:14:21Zoai:ri.conicet.gov.ar:11336/149607instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:14:22.262CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Predictive models of minimum temperatures for the south of Buenos Aires province |
title |
Predictive models of minimum temperatures for the south of Buenos Aires province |
spellingShingle |
Predictive models of minimum temperatures for the south of Buenos Aires province Hernandez, Gabriela Lorena AGRICULTURE CROP TEMPERATURE FINITE ELEMENTS PREDICTIVE MODELS |
title_short |
Predictive models of minimum temperatures for the south of Buenos Aires province |
title_full |
Predictive models of minimum temperatures for the south of Buenos Aires province |
title_fullStr |
Predictive models of minimum temperatures for the south of Buenos Aires province |
title_full_unstemmed |
Predictive models of minimum temperatures for the south of Buenos Aires province |
title_sort |
Predictive models of minimum temperatures for the south of Buenos Aires province |
dc.creator.none.fl_str_mv |
Hernandez, Gabriela Lorena Muller, Gabriela Viviana Villacampa, Yolanda Navarro González, Francisco José Aragonés, Luis |
author |
Hernandez, Gabriela Lorena |
author_facet |
Hernandez, Gabriela Lorena Muller, Gabriela Viviana Villacampa, Yolanda Navarro González, Francisco José Aragonés, Luis |
author_role |
author |
author2 |
Muller, Gabriela Viviana Villacampa, Yolanda Navarro González, Francisco José Aragonés, Luis |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
AGRICULTURE CROP TEMPERATURE FINITE ELEMENTS PREDICTIVE MODELS |
topic |
AGRICULTURE CROP TEMPERATURE FINITE ELEMENTS PREDICTIVE MODELS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Depending on the time of development of a crop temperature below 0 °C can cause damage to the plant, altering its development and subsequent yield. Since frosts are identified from the minimum air temperature, the objective of this research paper is to generate forecast -(predictive) models at 1, 3 and 5 days of the minimum daily temperature (Tmin) for Bahía Blanca city. Non-linear numerical models are generated using artificial neural networks and geometric models of finite elements. Six independent variables are used: temperature and dew point temperature at meteorological shelter level, relative humidity, cloudiness observed above the station, wind speed and direction measured at 10 m altitude. Data have been obtained between May and September from 1956 to 2015. Once the available data had been analyzed, this period was reduced to 2007–2015. For the selection of the most suitable model, the correlation coefficient of Pearson (R), the determination coefficient (R2) and the Mean Absolute Error (MAE) are evaluated. The results of the study determine that the geometric model of finite elements with 4 variables, over 9 years (2007–2015) and separated by the season of the year is the one that presents better adjustment in the forecast of Tmin with up to 5 days of anticipation. Fil: Hernandez, Gabriela Lorena. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Agronomía; Argentina Fil: Muller, Gabriela Viviana. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Centro de Estudios de Variabilidad y Cambio Climático; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina Fil: Villacampa, Yolanda. Universidad de Alicante; España Fil: Navarro González, Francisco José. Universidad de Alicante; España Fil: Aragonés, Luis. Universidad de Alicante; España |
description |
Depending on the time of development of a crop temperature below 0 °C can cause damage to the plant, altering its development and subsequent yield. Since frosts are identified from the minimum air temperature, the objective of this research paper is to generate forecast -(predictive) models at 1, 3 and 5 days of the minimum daily temperature (Tmin) for Bahía Blanca city. Non-linear numerical models are generated using artificial neural networks and geometric models of finite elements. Six independent variables are used: temperature and dew point temperature at meteorological shelter level, relative humidity, cloudiness observed above the station, wind speed and direction measured at 10 m altitude. Data have been obtained between May and September from 1956 to 2015. Once the available data had been analyzed, this period was reduced to 2007–2015. For the selection of the most suitable model, the correlation coefficient of Pearson (R), the determination coefficient (R2) and the Mean Absolute Error (MAE) are evaluated. The results of the study determine that the geometric model of finite elements with 4 variables, over 9 years (2007–2015) and separated by the season of the year is the one that presents better adjustment in the forecast of Tmin with up to 5 days of anticipation. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/149607 Hernandez, Gabriela Lorena; Muller, Gabriela Viviana; Villacampa, Yolanda; Navarro González, Francisco José; Aragonés, Luis; Predictive models of minimum temperatures for the south of Buenos Aires province; Elsevier; Science of the Total Environment; 699; 1-2020; 1-42 0048-9697 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/149607 |
identifier_str_mv |
Hernandez, Gabriela Lorena; Muller, Gabriela Viviana; Villacampa, Yolanda; Navarro González, Francisco José; Aragonés, Luis; Predictive models of minimum temperatures for the south of Buenos Aires province; Elsevier; Science of the Total Environment; 699; 1-2020; 1-42 0048-9697 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0048969719342639 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.scitotenv.2019.134280 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614070715547648 |
score |
13.070432 |