Distance-dependent electron transfer rate of immobilized redox proteins: A statistical physics approach

Autores
Georg, Sören; Kabuss, Julia; Weidinger, Inez M.; Murgida, Daniel Horacio; Hildebrandt, Peter; Knorr, Andreas; Richter, Marten
Año de publicación
2010
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The electron transfer kinetics of redox proteins adsorbed on metal electrodes coated with self-assembled monolayers (SAMs) of mercaptanes shows an unusual distance-dependence. For thick SAMs, the experimentally measured electron transfer rate constant kexp obeys the behavior predicted by Marcus theory, whereas for thin SAMs, kexp remains virtually constant. In this work, we present a simple theoretical model system for the redox protein cytochrome c electrostatically bound to a SAM-coated electrode. A statistical average of the electron tunneling rate is calculated by accounting for all possible orientations of the model protein. This approach, which takes into account the electric field dependent orientational distribution, allows for a satisfactory description of the "saturation" regime in the high electric field limit. It further predicts a nonexponential behavior of the average electron transfer processes that may be experimentally checked by extending kinetic experiments to shorter sampling times, i.e., 1/ kexp. For a comprehensive description of the overall kinetics in the saturation regime at sampling times of the order of 1/ kexp, it is essential to consider the dynamics of protein reorientation, which is not implemented in the present model. © 2010 The American Physical Society.
Fil: Georg, Sören. Technishe Universitat Berlin; Alemania
Fil: Kabuss, Julia. Technishe Universitat Berlin; Alemania
Fil: Weidinger, Inez M.. Technishe Universitat Berlin; Alemania
Fil: Murgida, Daniel Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; Argentina
Fil: Hildebrandt, Peter. Technishe Universitat Berlin; Alemania
Fil: Knorr, Andreas. Technishe Universitat Berlin; Alemania
Fil: Richter, Marten. Technishe Universitat Berlin; Alemania
Materia
Protein ET
Statistical Physics
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/72007

id CONICETDig_f7f40d4d946d24e1771f22f58b880f0e
oai_identifier_str oai:ri.conicet.gov.ar:11336/72007
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Distance-dependent electron transfer rate of immobilized redox proteins: A statistical physics approachGeorg, SörenKabuss, JuliaWeidinger, Inez M.Murgida, Daniel HoracioHildebrandt, PeterKnorr, AndreasRichter, MartenProtein ETStatistical Physicshttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1The electron transfer kinetics of redox proteins adsorbed on metal electrodes coated with self-assembled monolayers (SAMs) of mercaptanes shows an unusual distance-dependence. For thick SAMs, the experimentally measured electron transfer rate constant kexp obeys the behavior predicted by Marcus theory, whereas for thin SAMs, kexp remains virtually constant. In this work, we present a simple theoretical model system for the redox protein cytochrome c electrostatically bound to a SAM-coated electrode. A statistical average of the electron tunneling rate is calculated by accounting for all possible orientations of the model protein. This approach, which takes into account the electric field dependent orientational distribution, allows for a satisfactory description of the "saturation" regime in the high electric field limit. It further predicts a nonexponential behavior of the average electron transfer processes that may be experimentally checked by extending kinetic experiments to shorter sampling times, i.e., 1/ kexp. For a comprehensive description of the overall kinetics in the saturation regime at sampling times of the order of 1/ kexp, it is essential to consider the dynamics of protein reorientation, which is not implemented in the present model. © 2010 The American Physical Society.Fil: Georg, Sören. Technishe Universitat Berlin; AlemaniaFil: Kabuss, Julia. Technishe Universitat Berlin; AlemaniaFil: Weidinger, Inez M.. Technishe Universitat Berlin; AlemaniaFil: Murgida, Daniel Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; ArgentinaFil: Hildebrandt, Peter. Technishe Universitat Berlin; AlemaniaFil: Knorr, Andreas. Technishe Universitat Berlin; AlemaniaFil: Richter, Marten. Technishe Universitat Berlin; AlemaniaAmerican Physical Society2010-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/72007Georg, Sören; Kabuss, Julia; Weidinger, Inez M.; Murgida, Daniel Horacio; Hildebrandt, Peter; et al.; Distance-dependent electron transfer rate of immobilized redox proteins: A statistical physics approach; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 81; 4; 4-2010; 46101-461101539-3755CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.81.046101info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/abstract/10.1103/PhysRevE.81.046101info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:10:24Zoai:ri.conicet.gov.ar:11336/72007instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:10:24.803CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Distance-dependent electron transfer rate of immobilized redox proteins: A statistical physics approach
title Distance-dependent electron transfer rate of immobilized redox proteins: A statistical physics approach
spellingShingle Distance-dependent electron transfer rate of immobilized redox proteins: A statistical physics approach
Georg, Sören
Protein ET
Statistical Physics
title_short Distance-dependent electron transfer rate of immobilized redox proteins: A statistical physics approach
title_full Distance-dependent electron transfer rate of immobilized redox proteins: A statistical physics approach
title_fullStr Distance-dependent electron transfer rate of immobilized redox proteins: A statistical physics approach
title_full_unstemmed Distance-dependent electron transfer rate of immobilized redox proteins: A statistical physics approach
title_sort Distance-dependent electron transfer rate of immobilized redox proteins: A statistical physics approach
dc.creator.none.fl_str_mv Georg, Sören
Kabuss, Julia
Weidinger, Inez M.
Murgida, Daniel Horacio
Hildebrandt, Peter
Knorr, Andreas
Richter, Marten
author Georg, Sören
author_facet Georg, Sören
Kabuss, Julia
Weidinger, Inez M.
Murgida, Daniel Horacio
Hildebrandt, Peter
Knorr, Andreas
Richter, Marten
author_role author
author2 Kabuss, Julia
Weidinger, Inez M.
Murgida, Daniel Horacio
Hildebrandt, Peter
Knorr, Andreas
Richter, Marten
author2_role author
author
author
author
author
author
dc.subject.none.fl_str_mv Protein ET
Statistical Physics
topic Protein ET
Statistical Physics
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The electron transfer kinetics of redox proteins adsorbed on metal electrodes coated with self-assembled monolayers (SAMs) of mercaptanes shows an unusual distance-dependence. For thick SAMs, the experimentally measured electron transfer rate constant kexp obeys the behavior predicted by Marcus theory, whereas for thin SAMs, kexp remains virtually constant. In this work, we present a simple theoretical model system for the redox protein cytochrome c electrostatically bound to a SAM-coated electrode. A statistical average of the electron tunneling rate is calculated by accounting for all possible orientations of the model protein. This approach, which takes into account the electric field dependent orientational distribution, allows for a satisfactory description of the "saturation" regime in the high electric field limit. It further predicts a nonexponential behavior of the average electron transfer processes that may be experimentally checked by extending kinetic experiments to shorter sampling times, i.e., 1/ kexp. For a comprehensive description of the overall kinetics in the saturation regime at sampling times of the order of 1/ kexp, it is essential to consider the dynamics of protein reorientation, which is not implemented in the present model. © 2010 The American Physical Society.
Fil: Georg, Sören. Technishe Universitat Berlin; Alemania
Fil: Kabuss, Julia. Technishe Universitat Berlin; Alemania
Fil: Weidinger, Inez M.. Technishe Universitat Berlin; Alemania
Fil: Murgida, Daniel Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; Argentina
Fil: Hildebrandt, Peter. Technishe Universitat Berlin; Alemania
Fil: Knorr, Andreas. Technishe Universitat Berlin; Alemania
Fil: Richter, Marten. Technishe Universitat Berlin; Alemania
description The electron transfer kinetics of redox proteins adsorbed on metal electrodes coated with self-assembled monolayers (SAMs) of mercaptanes shows an unusual distance-dependence. For thick SAMs, the experimentally measured electron transfer rate constant kexp obeys the behavior predicted by Marcus theory, whereas for thin SAMs, kexp remains virtually constant. In this work, we present a simple theoretical model system for the redox protein cytochrome c electrostatically bound to a SAM-coated electrode. A statistical average of the electron tunneling rate is calculated by accounting for all possible orientations of the model protein. This approach, which takes into account the electric field dependent orientational distribution, allows for a satisfactory description of the "saturation" regime in the high electric field limit. It further predicts a nonexponential behavior of the average electron transfer processes that may be experimentally checked by extending kinetic experiments to shorter sampling times, i.e., 1/ kexp. For a comprehensive description of the overall kinetics in the saturation regime at sampling times of the order of 1/ kexp, it is essential to consider the dynamics of protein reorientation, which is not implemented in the present model. © 2010 The American Physical Society.
publishDate 2010
dc.date.none.fl_str_mv 2010-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/72007
Georg, Sören; Kabuss, Julia; Weidinger, Inez M.; Murgida, Daniel Horacio; Hildebrandt, Peter; et al.; Distance-dependent electron transfer rate of immobilized redox proteins: A statistical physics approach; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 81; 4; 4-2010; 46101-46110
1539-3755
CONICET Digital
CONICET
url http://hdl.handle.net/11336/72007
identifier_str_mv Georg, Sören; Kabuss, Julia; Weidinger, Inez M.; Murgida, Daniel Horacio; Hildebrandt, Peter; et al.; Distance-dependent electron transfer rate of immobilized redox proteins: A statistical physics approach; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 81; 4; 4-2010; 46101-46110
1539-3755
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.81.046101
info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/abstract/10.1103/PhysRevE.81.046101
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083252323876864
score 13.22299